Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

NIST Authors in Bold

Displaying 76 - 100 of 1132

Zeeman-resolved Autler-Townes splitting in Rydberg atoms with a tunable RF resonance and a single transition dipole moment

February 21, 2024
Author(s)
Noah Schlossberger, Drew Rotunno, Aly Artusio-Glimpse, Nik Prajapati, Samuel Berweger, Dangka Shylla, Matt Simons, Christopher L. Holloway
Applying a magnetic field as a method for tuning the frequency of Autler-Townes splitting for Rydberg electrometry has recently been demonstrated. In this Letter, we provide a theoretical understanding of Rydberg electromechanically-induced-transparency

Zeeman effect in the weak and intermediate field regime of Kr isotopes at the linear plasma device PSI-2

February 16, 2024
Author(s)
Yuri Ralchenko, DIPTI DIPTI, Oleksandr Marchuk, Marc Sackers, Stephan Ertmer, Sebastijan Brezinsek, Arkadi Kreter
Laser absorption spectroscopy provides high-resolution spectra of atomic transitions that reveal many often inaccessible nuances. Correctly analyzing the absorption spectra is impossible without accurately capturing the line shape. We demonstrate in this

Visible to Ultraviolet Frequency Comb Generation in Lithium Niobate Nanophotonic Waveguides

January 15, 2024
Author(s)
Tsung Han Wu, Luis Ledezma, Connor Fredrick, Pooja Sekhar, Ryoto Sekine, Quishi Guo, Ryan Briggs, Alireza Marandi, Scott Diddams
The introduction of nonlinear nanophotonic devices to the field of optical frequency comb metrology has enabled new opportunities for low-power and chip-integrated clocks, high-precision frequency synthesis, and broad bandwidth spectroscopy. However, most

Comprehensive Quantum Calculation of the First Dielectric Virial Coefficient of Water

January 12, 2024
Author(s)
Giovanni Garberoglio, Chiara Lissoni, Luca Spagnoli, Allan H. Harvey
We present a complete calculation, fully accounting for quantum effects and for molecular flexibility, of the first dielectric virial coefficient of water and its isotopologues. The contribution of the electronic polarizability is computed from a state-of

Recommended electron-impact excitation and ionization cross sections for Be II

January 9, 2024
Author(s)
DIPTI DIPTI, Christian Hill, Dmitry Fursa, Haadi Umer, Igor Bray, Yuri Ralchenko
An overview of the current status of electron-impact excitation and ionization cross sections for Be II is given and the recommended data sets for use in plasma modeling are presented. Accurate cross sections between the lowest 14 atomic terms of 1s2nl (n

Extending Explainable Boosting Machines to Scientific Image Data

November 30, 2023
Author(s)
Daniel Schug, Sai Yerramreddy, Rich Caruana, Craig Greenberg, Justyna Zwolak
As the deployment of computer vision technology becomes increasingly common in science, the need for explanations of the system and its output has become a focus of great concern. Driven by the pressing need for interpretable models in science, we propose

Optimal binary gratings for multi-wavelength magneto-optical traps

November 20, 2023
Author(s)
Oliver Burrow, Robert Fasano, Michael Wright, Wesley Brand, Wenbo Li, Andrew Ludlow, Erling Riis, Paul Griffin, Aidan Arnold
Grating magneto-optical traps are an enabling quantum technology for portable metrological devices with ultracold atoms. However, beam diffraction efficiency and angle are affected by wavelength, creating a single-optic design challenge for laser cooling

Direct-Laser-Written Polymer Nanowire Waveguides for Broadband Single Photon Collection from Epitaxial Quantum Dots into a Gaussian-like Mode

November 16, 2023
Author(s)
Edgar Perez, Cori Haws, Marcelo Davanco, Jindong Song, Luca Sapienza, Kartik Srinivasan
Single epitaxial quantum dots (QDs) are a leading technology for quantum light generation, particularly when they are embedded in photonic geometries that enhance their emission into a targeted and confined mode. However, coupling this mode into a
Displaying 76 - 100 of 1132
Was this page helpful?