Skip to main content

NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.

Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.

U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

NIST Authors in Bold

Displaying 501 - 525 of 913

Classical simulation of Yang-Baxter gates

November 3, 2014
Author(s)
Stephen P. Jordan, Gorjan Alagic, Aniruddha Bapat
A unitary operator that satisfies the constant Yang-Baxter equation immediately yields a unitary representation of the braid group Bn for every n ≥ 2. If we view such an operator as a quantum-computational gate, then topological braiding corresponds to a

Frequency Comb Generation in Superconducting Resonators

October 30, 2014
Author(s)
Robert P. Erickson, Michael Vissers, Martin O. Sandberg, Steven R. Jefferts, David P. Pappas
We have generated frequency combs spanning 0.5 to 20 GHz in superconducting λ=2 resonators at T ¼ 3 K. Thin films of niobium-titanium nitride enabled this development due to their low loss, high nonlinearity, low frequency dispersion, and high critical

High-Fidelity, Weak-Light Polarization Gate Using Room-Temperature Atomic Vapor

October 23, 2014
Author(s)
Lu Deng, Runbing Li, Chengjie Zhu, Edward W. Hagley
Using a polarization-selective-Kerr-phase-shift technique we demonstrate an all-optical polarization gate in an atomic gain medium with the control-field intensity equivalent to 20 photons of 10 nanoseconds propagating in a 5 μm mode diameter photonic

High-efficiency WSi superconducting nanowire single-photon detectors operating at 2.5 K

September 24, 2014
Author(s)
Varun B. Verma, Boris Korzh, Felix Bussieres, Robert D. Horansky, Adriana E. Lita, Francesco Marsili, Hugo Zbinden, Richard P. Mirin, Sae Woo Nam
We demonstrate that superconducting nanowire single photon detectors (SNSPDs) fabricated from amorphous WSi may be operated with > 75 % system detection efficiency at a temperature approaching seventy percent of the superconducting transition temperature

Mutual Cross Modulation of Two Laser Beams at the Individual-Photon Level

September 12, 2014
Author(s)
Michael Gullans, Kristin M. Beck, Qian Lin, M D. Lukin, Vladan Vuletic, Wenlan Chen
The realization of deterministic photon-photon interactions is a long-standing goal in optical science. Using an atomic ensemble inside a cavity, we demonstrate the mutual cross modulation of two continuous light beams at the level of individual photons

Photon-number uncertainty in a superconducting transition-edge sensor beyond resolved-photon-number determination

September 10, 2014
Author(s)
Zachary H. Levine, Boris L. Glebov, Alan L. Migdall, Thomas Gerrits, Brice R. Calkins, Adriana E. Lita, Sae Woo Nam
As part of an effort to extend fundamental single-photon measurements into the macroscopic regime, we explore how best to assign photon-number uncertainties to output waveforms of a superconducting Transition Edge Sensor (TES) and how those assignments

Sub-wavelength interference of thermal light with photon-number resolving detection

September 10, 2014
Author(s)
Yanhua (. Zhai, Francisco E. Becerra Chavez, Jingyun Fan, Alan L. Migdall
We examine the spatial correlation of thermal-light diffracted through a double-slit using photon-number-resolved detection to directly measure high-order correlations. We observe sinusoidal modulations of the spatial coherence in the diffracted light

Environment-assisted quantum control of a solid state spin via 2-color coherent dark states

September 7, 2014
Author(s)
Jacob M. Taylor, Jack Hansom, Carsten Schulte, Claire Le Gall, Clemens Matthiesen, Edmund Clarke, Maxime Hugues, Mete Atature
Semiconductor quantum dots (QDs) offer an efficient and scalable interface between single spins and optical photons. However, the solid-state environment of the QD represents an inherent source of noise, generally considered detrimental to coherent control

BQP-completeness of Scattering in Scalar Quantum Field Theory

September 1, 2014
Author(s)
Stephen P. Jordan, Keith S. Lee, John Preskill
Recent work has shown that quantum computers can in polynomial time compute scattering probabilities in massive quantum field theories. One can translate this task into a corresponding formal problem in computational complexity theory. Here, we establish

Photonic-assisted Endoscopic Analysis of Guided W-band Pulses

August 24, 2014
Author(s)
Jeffrey A. Jargon, DongJoon Lee, JaeYong Kwon
We present a photonic-assisted time-domain measurement technique for exploring millimeter-wave propagation through a W-band waveguide. The electric fields, guided inside a rectangular waveguide, are sampled using a sub-millimeter-scale electro-optic probe

Systematic Error Resolved in NIST Johnson Noise Thermometer

August 24, 2014
Author(s)
Alessio Pollarolo, Weston L. Tew, Horst Rogalla, Samuel P. Benz
In the Johnson Noise Thermometry approach, Boltzmann’s constant k is obtained as the ratio of the noise power measured across a sense resistor at the triple point of water and the noise power measured for a synthesized reference waveform. The reference

Single-shot security for one-time memories in the isolated qubits model

August 21, 2014
Author(s)
Yi-Kai Liu
One-time memories (OTM's) are simple, tamper-resistant cryptographic devices, which can be used to implement sophisticated functionalities such as one-time programs. OTM's cannot exist in a fully-classical world, or in a fully-quantum world, but there is

Topological Robustness of Transport Statistics for Photons in a Synthetic Gauge Field

August 20, 2014
Author(s)
Sunil Mittal, Jingyun Fan, Sanli Faez, Alan L. Migdall, Jacob M. Taylor, Mohammad Hafezi
Electronic transport through a disordered medium leads generically to localization, where conductance drops exponentially with system size, even at zero temperature. The addition of gauge fields to disordered media leads to fundamental changes in transport

Engineering three-body interaction and Pfaffian states in circuit QED systems

August 18, 2014
Author(s)
Mohammad Hafezi, Prabin Adhikari, Jacob M. Taylor
We demonstrate a scheme to engineer the three-body interaction in circuit-QED systems by tuning a fluxonium qubit. Connecting such qubits in a square lattice and controlling the tunneling dynamics, in the form of a synthesized magnetic field, for the

Enriching 28Si beyond 99.9998 % for semiconductor quantum computing

August 5, 2014
Author(s)
Kevin J. Dwyer, Joshua M. Pomeroy, David S. Simons, June W. Lau, Kristen L. Steffens
Using a laboratory-scale apparatus, we enrich 28Si and produce material with 40 times less residual 29Si than previously reported. Starting from natural abundance silane gas, we offer an alternative to industrial gas centrifuges for providing materials
Displaying 501 - 525 of 913
Was this page helpful?