Skip to main content

NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.

Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.

U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

NIST Authors in Bold

Displaying 251 - 275 of 913

Hybrid integrated quantum photonic circuits

April 13, 2020
Author(s)
Ali Elshaari, Wolfram Pernice, Kartik Srinivasan, Oliver Benson, Val Zwiller
Recent development in chip-based photonic quantum circuits has radically impacted the ways in which we can process quantum information. However, it is challenging for any one specific integrated photonics platform to meet the stringent demands for most

Parallel Device-Independent Quantum Key Distribution

April 9, 2020
Author(s)
Rahul Jain, Carl Miller, Yaoyun Shi
A prominent application of quantum cryptography is the distribution of cryptographic keys that are provably secure. Such security proofs were extended by Vazirani and Vidick (Physical Review Letters, 113, 140501, 2014) to the device-independent (DI)

Auto-tuning of double dot devices it in situ with machine learning

March 31, 2020
Author(s)
Justyna Zwolak, Thomas McJunkin, Sandesh Kalantre, J. P. Dodson, Evan MacQuarrie, D. E. Savage, M. G. Lagally, S N. Coppersmith, Mark A. Eriksson, Jacob Taylor
The current practice of manually tuning quantum dots (QDs) for qubit operation is a relatively time- consuming procedure that is inherently impractical for scaling up and applications. In this work, we report on the \it in situ} implementation of a

Tuning between photon-number and quadrature measurements with weak-field homodyne detection

March 20, 2020
Author(s)
G Thekkadath, David Phillips, Jacob Bulmer, W.R. Clements, A. Eckstein, B.A. Bell, J Lugani, Adriana Lita, Sae Woo Nam, Thomas Gerrits, C.G. Wade, Ian Walmsley
Variable measurement operators enable optimization of strategies for testing quantum properties and for preparation of a range of quantum states. Here, we experimentally implement a weak-field homodyne detector that can continuously tune between performing

The Measurement of the Acceleration Due to Gravity

March 12, 2020
Author(s)
J E. Faller
Instrumental capabilities for both relative and absolute gravity measurements can be made at the parts in 10 9 level of precision. Large but still portable absolute gravimeters have also reached the parts in 10 9 level of accuracy. Present emphasis is on

Targeted enrichment of 28Si thin films for quantum computing

March 9, 2020
Author(s)
Ke Tang, Hyun S. Kim, Aruna N. Ramanayaka, David S. Simons, Joshua M. Pomeroy
We report on the growth of isotopically enriched 28Si epitaxial films with precisely controlled enrichment levels, ranging from natural abundance ratio of 92.2% all the way to 99.99987 % (0.832 × 10-6 mol/mol 29Si). Isotopically enriched 28Si is regarded

Ray-based classification framework for high-dimensional data

February 3, 2020
Author(s)
Justyna Zwolak, Jacob Taylor, Sandesh Kalantre, Thomas McJunkin, Brian Weber
While classification of arbitrary structures in high dimensions may require complete quantitative information, for simple geometrical structures, low-dimensional qualitative information about the boundaries defining the structures can suffice. Rather than

Microwave-based arbitrary cphase gates for transmon qubits

January 17, 2020
Author(s)
George S. Barron, Fernando A. Calderon-Vargas, Junling Long, David P. Pappas, Sophia E. Economou
Superconducting transmon qubits are of great interest for quantum computing and quantum simulation. A key component of quantum chemistry simulation algorithms is breaking up the evolution into small steps, which naturally leads to the need for nonmaximally

Optical quantum memory and its applications in quantum communication systems

January 16, 2020
Author(s)
Lijun Ma, Xiao Tang, Oliver T. Slattery
Optical quantum memory is a device that can store the quantum state of photons and retrieve it with high fidelity on demand. The device can be used to enhance performance for many quantum communication systems such as measurement device independent (MDI)

Experimental Low-Latency Device-Independent Quantum Randomness

January 10, 2020
Author(s)
Yanbao Zhang, Lynden K. Shalm, Joshua C. Bienfang, Martin J. Stevens, Michael D. Mazurek, Sae Woo Nam, Carlos Abellan, Waldimar Amaya, Morgan Mitchell, Honghao Fu, Carl A. Miller, Alan Mink, Emanuel H. Knill
Applications of randomness such as private key generation and public randomness beacons require small blocks of certified random bits on demand. Device-independent quantum randomness can produce such random bits, but existing quantum-proof protocols and

Detector-Agnostic Phase-Space Distributions

January 9, 2020
Author(s)
Thomas Gerrits, Adriana Lita, Sae Woo Nam, Jan Sperling, David Phillips, Jacob Bulmer, G Thekkadath, A. Eckstein, T Wolterink, J Lugani, Wolfgang Vogel, G.S. Agarwal, Christine Silberhorn, Ian Walmsley
The representation of quantum states via phase-space functions constitutes an intuitive technique to characterize light. However, the reconstruction of such distributions is challenging as it demands specific types of detectors and detailed models thereof

Use of quantum effects as potential qualifying metrics for "quantum grade silicon"

December 30, 2019
Author(s)
Aruna N. Ramanayaka, Ke Tang, Joseph A. Hagmann, Hyun S. Kim, David S. Simons, Curt A. Richter, Joshua M. Pomeroy
Across solid state quantum information, material deficiencies limit performance through enhanced relaxation, charge defect motion, or isotopic spin noise. While classical measurements of device performance provide cursory guidance, specific qualifying

Calibration of free-space and fiber-coupled single-photon detectors

December 20, 2019
Author(s)
Thomas Gerrits, Alan L. Migdall, Joshua C. Bienfang, John H. Lehman, Sae Woo Nam, Jolene D. Splett, Igor Vayshenker, Chih-Ming Wang
We measure the detection efficiency of single-photon detectors at wavelengths near 851 nm and 1533.6 nm. We investigate the spatial uniformity of one free-space-coupled single-photon avalanche diode and present a comparison between fusion-spliced and

Tunable quantum beat of single photons enabled by nonlinear nanophotonics

November 22, 2019
Author(s)
Qing Li, Anshuman Singh, Xiyuan Lu, John Lawall, Varun Verma, Richard Mirin, Sae Woo Nam, Kartik Srinivasan
Integrated photonics is a promising approach for scalable implementation of diverse quantum resources at the chip-scale. Here, we demonstrate the integration of two essential building blocks for quantum information science - quantum sources and frequency

Chalcogenide Topological Insulators

November 15, 2019
Author(s)
Joseph A. Hagmann
The purpose of this chapter is to introduce the reader to the chalcogenide materials systems that host the topological insulator phase of quantum matter. Specifically, the HgTe quantum well 2D topological insulator system and the V2VI3-type bismuth- and

Advanced technologies for quantum photonic devices based on epitaxial quantum dots

October 11, 2019
Author(s)
Tian M. Zhao, Yan Chen, Yu Ying, Li Qing, Marcelo I. Davanco, Jin Liu
Photonic quantum technology is creating breakthroughs in both fundamental quantum science and applications such as quantum communication, computation and sensing. Regarded as artificial atoms due to the discrete energy levels they support, semiconductor

State-independent quantum tomography of a single-photon state by photon-number-resolving measurements

October 10, 2019
Author(s)
Thomas Gerrits, Adriana Lita, Sae Woo Nam, Rajveer Nehra, Aye Win, Miller Eaton, Niranjan Sridhar, R. Shahrokhshahi, O Pfister
A narrowband single-photon state was generated by heralding cavity-enhanced spontaneous parametric downconversion in a PPKTP optical parametric oscillator. The Wigner quasiprobability distribution function was reconstructed, in a state-independent manner
Displaying 251 - 275 of 913
Was this page helpful?