NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Ray-based classification framework for high-dimensional data
Published
Author(s)
Justyna Zwolak, Jacob Taylor, Sandesh Kalantre, Thomas McJunkin, Brian Weber
Abstract
While classification of arbitrary structures in high dimensions may require complete quantitative information, for simple geometrical structures, low-dimensional qualitative information about the boundaries defining the structures can suffice. Rather than using dense, multi-dimensional data, we propose a deep neural network (DNN) classification framework that utilizes a minimal collection of one-dimensional representations, called rays, to construct the "fingerprint" of the structure(s) based on substantially reduced information. We empirically study this framework using a synthetic dataset of double and triple quantum dot devices and apply it to the classification problem of identifying the device state. We show that the performance of the ray-based classifier is already on par with traditional 2D images for low dimensional systems, while significantly cutting down the data acquisition cost.
Proceedings Title
Proceedings of the Third Workshop on Machine Learning and the Physical Sciences
Conference Dates
December 5-12, 2020
Conference Location
Vancouver, CA
Conference Title
Workshop on Machine Learning and the Physical Sciences
Zwolak, J.
, Taylor, J.
, Kalantre, S.
, McJunkin, T.
and Weber, B.
(2020),
Ray-based classification framework for high-dimensional data, Proceedings of the Third Workshop on Machine Learning and the Physical Sciences, Vancouver, CA, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=930482
(Accessed October 10, 2025)