Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

NIST Authors in Bold

Displaying 51 - 75 of 691

Advanced Temperature-Control Chamber for Resistance Standards

April 10, 2020
Author(s)
Shamith Payagala, Alireza Panna, Albert Rigosi, Dean G. Jarrett
Calibration services for resistance metrology have continued to advance their capabilities and establish new and improved methods for maintaining standard resistors. Despite the high quality of these methods, there still exist inherent limitations to the

Field Compressed Sensing

January 17, 2020
Author(s)
Anthony B. Kos, Fabio C. Da Silva, Jason B. Coder, Craig W. Nelson, Grace E. Antonucci, Archita Hati
Imaging solutions based on wave scattering seek real-time performance, high dynamic range, and spatial accuracy at scales spanning from nanometers to thousands of kilometers. Compressed sensing algorithms use sparsity to reduce sample size during image

Phononic Frequency Combs For Engineering MEMS/NEMS Devices With Tunable Sensitivity

January 13, 2020
Author(s)
Adarsh V. Ganesan, Ashwin Seshia, Jason J. Gorman
Over the past two decades, MEMS resonators have received considerable attention for physical, chemical and biological sensing applications. Typically, the operation of MEMS resonant sensors relies on the tracking of a resonance frequency using a feedback

A kilopixel array of superconducting nanowire single-photon detectors

November 18, 2019
Author(s)
Varun Verma, Adriana Lita, Sae Woo Nam, R P. Mirin, Emma Wollman, William Farr, Matthew Shaw
We present a 1024-element imaging array of superconducting nanowire single photon detectors (SNSPDs) using a 32x32 row-column multiplexing architecture. Large arrays are desirable for applications such as imaging, spectroscopy, or particle detection.

Crosstalk in microwave SQUID multiplexers

November 15, 2019
Author(s)
John A. Mates, Daniel T. Becker, Douglas A. Bennett, Bradley J. Dober, Johnathon D. Gard, Gene C. Hilton, Daniel S. Swetz, Leila R. Vale, Joel N. Ullom
Low-temperature detector technologies provide extraordinary sensitivity for applications ranging from precision measurements of the cosmic microwave background to high-resolution, high-rate x-ray, and c-ray spectroscopy. To utilize this sensitivity, new

A Robust Principal Component Analysis for Outlier Identification in Messy Microcalorimeter Data

November 12, 2019
Author(s)
Joseph W. Fowler, Bradley K. Alpert, Young I. Joe, Galen C. O'Neil, Daniel S. Swetz, Joel N. Ullom
A principal component analysis (PCA) of clean microcalorimeter pulse records can be a first step beyond statistically optimal linear filtering of pulses toward a fully nonlinear analysis. For PCA to be practical on spectrometers with hundreds of sensors

Expanding the Capability of Microwave Multiplexed Readout for Fast Signals in Microcalorimeters

November 11, 2019
Author(s)
Kelsey M. Morgan, Daniel T. Becker, Douglas A. Bennett, Johnathon D. Gard, Jozsef Imrek, John A. Mates, Christine G. Pappas, Carl D. Reintsema, Daniel R. Schmidt, Joel N. Ullom, Joel C. Weber, Abigail L. Wessels, Daniel S. Swetz
Microwave SQUID multiplexing has become a key technology for reading out large arrays of X-ray and gamma-ray microcalorimeters with mux factors of 100 or more. The desire for fast X-ray pulses that accommodate photon counting rates of hundreds or thousands

Label-free surface acoustic wave-based embedded flow sensor

October 27, 2019
Author(s)
Aurore F. Quelennec, Jason J. Gorman, Darwin Reyes-Hernandez
This paper presents a calibration/label-free flow sensor embedded in a microfluidic system. This sensor is based on surface acoustic waves, where the acoustic intensity is dependent on the flow rate of the propagating medium. The range of flow rates

Live quantification of cell viability via neutral red uptake using lens-free imaging

October 27, 2019
Author(s)
Brian J. Nablo, Jungjoon Ahn, Kiran Bhadriraju, Jong M. Lee, Darwin Reyes-Hernandez
We present the quantification of cell viability during neutral red (NR) uptake with a compact lens-free system utilizing two light sources. Conventionally, the NR uptake assay determines cell viability based on the accumulation of NR within lysosomes and

Discriminative potential of ion mobility spectrometry for the detection of fentanyl and fentanyl analogues relative to confounding environmental interferents

September 27, 2019
Author(s)
Thomas Forbes, Jeffrey Lawrence, Jennifer R. Verkouteren, R. Michael Verkouteren
The opioid crisis and emergence of fentanyl, fentanyl analogues, and other synthetic opioids has highlighted the need for sensitive and robust detection for interdiction at screening points, notably vehicles at border crossings and packages at postal

QUANTUM-LIMITED 2D SENSORS FOR PH AND BIOSENSING

September 27, 2019
Author(s)
Arvind K. Balijepalli, Son T. Le, Harish C. Pant, Curt A. Richter
We have developed biosensors based on dual-gated field-effect transistors (FETs) that operate at the quantum capacitance limit. The FETs are fabricated with atomically thin MoS2 semiconducting films and top-gated with a room temperature ionic-liquid. The

Johnson Noise Thermometry

September 3, 2019
Author(s)
Weston L. Tew, Jifeng Qu, K L. Zhou, Samuel P. Benz, Horst Rogalla, David R. White
Johnson noise thermometers infer thermodynamic temperature from measurements of the thermally-induced current fluctuations that occur in all electrical conductors. This paper reviews the status of Johnson noise thermometry and its prospects for both

Revisiting the Photon-Drag Effect in Metal Films

August 2, 2019
Author(s)
Jared H. Strait, Glenn E. Holland, Wenqi Zhu, Cheng Zhang, Bojan R. Ilic, Amit K. Agrawal, Domenico Pacifici, Henri J. Lezec
The photon-drag effect, the rectified current in a medium induced by conservation of momentum of absorbed or redirected light, is a unique probe of the detailed mechanisms underlying radiation pressure. We revisit this effect in gold, a canonical Drude

Miniaturized Nanohole Array Based Plasmonic Sensor for the Detection of Acetone and Ethanol with Insights into the Kinetics of Adsorptive Plasmonic Sensing

June 6, 2019
Author(s)
Yangyang Zhao, Kalisadhan Mukherjee, Kurt D. Benkstein, Libin Sun, Kristen L. Steffens, Christopher B. Montgomery, Stephen Semancik, Mona Zaghloul
The present work demonstrates development of a miniaturized plasmonic platform comprised of a Au nanohole array (NHA) on a Si/Si3N4 substrate. Plasmonic responses of the NHA platform, which is coated with Cu-benzenetricarboxylate metal organic framework

BABAR: Black Array of Broadband Absolute Radiometers for far infrared sensing

May 13, 2019
Author(s)
Christopher S. Yung, Nathan A. Tomlin, Cameron Straatsma, Joel Rutkowski, Erik Richard, Dave Harber, John H. Lehman, Michelle S. Stephens
Currently at NIST, there is an effort to develop a black array of broadband absolute radiometers (BABAR) for far infrared sensing. The linear array of radiometer elements is based on uncooled vanadium oxide (VOx) microbolometer pixel technology but with

IEEE 1451 Smart Sensor Digital Twin Federation for IoT/CPS Research

May 6, 2019
Author(s)
Yuyin Song, Martin J. Burns, Abhinav Pandey, Thomas P. Roth
Cyber-physical systems (CPS) are smart systems that include engineered, interacting networks of physical and cyber components. The Institute of Electrical and Electronics Engineers (IEEE) 1451 defines a set of open, common, network-independent

Reproducible Performance Improvements to Monolayer MoS2 Transistors through Exposed Material Forming Gas Annealing

April 16, 2019
Author(s)
Nicholas B. Guros, Son T. Le, Siyuan Zhang, Brent A. Sperling, Jeffery B. Klauda, Curt A. Richter, Arvind Balijepalli
We have developed an optimized process to realize high-performance field-effect transistor (FET) arrays from large-area 2D MoS2 films with an average yield of 85 %. A central element of the technique is a new exposed film forming gas anneal (EF- FGA) that

Ligand-based stability changes in duplex DNA measured with a microscale electrochemical platform

April 12, 2019
Author(s)
Sarah M. Robinson, Zuliang Shen, Jon R. Askim, Christopher B. Montgomery, Herman O. Sintim, Stephen Semancik
Development of technologies for rapidly screening the thermal stability of DNA secondary structures and the effects on stability for binding of small molecule drugs is important to the drug discovery process. In this report, we describe the capabilities of

Use of Transition Models to Design High Performance TESs for the LCLS-II Soft X-Ray Spectrometer

March 4, 2019
Author(s)
Kelsey M. Morgan, Daniel T. Becker, Douglas A. Bennett, William B. Doriese, Johnathon D. Gard, K D. Irwin, Sang-Jun Lee, Dale Li, John A. Mates, Christine G. Pappas, Daniel R. Schmidt, Charles Titus, Daniel Van Winkle, Joel N. Ullom, Abigail L. Wessels, Daniel S. Swetz
We are designing an array of transition-edge sensor (TES) microcalorimeters for a soft X-ray spectrometer at the Linac Coherent Light Source at SLAC National Accelerator Laboratory to coincide with upgrades to the free electron laser facility. The complete

Proceedings of the First Workshop on Standards for Microfluidics

January 28, 2019
Author(s)
Darwin R. Reyes-Hernandez, Henne van Heeren
In the last two decades, the microfluidics/lab-on-a-chip field has evolved from the concept of micro total analysis systems, where systems with integrated pretreatment and analysis of chemicals were envisioned, to what is known today as lab-on-a-chip
Displaying 51 - 75 of 691