Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

NIST Authors in Bold

Displaying 1 - 25 of 755

Colloquium: Advances in automation of quantum dot devices control

February 17, 2023
Justyna Zwolak, Jacob Taylor
Arrays of quantum dots (QDs) are a promising candidate system to realize scalable, coupled qubit systems and serve as a fundamental building block for quantum computers. In such semiconductor quantum systems, devices now have tens of individual

Topological charge pumping with subwavelength Raman lattices

February 15, 2023
Ian Spielman, Gediminas Juzeliunas, Domantas Burba, mantas Raciunas
Recent experiments demonstrated deeply subwavelength lattices using atoms with $N$ internal states Raman-coupled with lasers of wavelength $\lambda$. The resulting unit cell was $\lambda/2N$ in extent, an $N$-fold reduction compared to the usual $\lambda/2

Tight Bounds on the Convergence of Noisy Random Circuits to the Uniform Distribution

December 16, 2022
Michael Gullans, Abhinav Deshpande, Bill Fefferman, Alexey Gorshkov, Pradeep Niroula, Oles Shtanko
We study the properties of output distributions of noisy, random circuits. We obtain upper and lower bounds on the expected distance of the output distribution from the uniform distribution. These bounds are tight with respect to the dependence on circuit

High-Fidelity State Preparation, Quantum Control, and Readout of an Isotopically Enriched Silicon Spin Qubit

December 12, 2022
Adam Mills, Charlie Guinn, Michael Gullans, Mayer Feldman, Anthony Sigillito, M. Rakher, J. Kerckhoff, A. C. Jackson, Jason Petta
Quantum systems must be prepared, controlled, and measured with high fidelity in order to per- form complex quantum algorithms. Control fidelities have greatly improved in silicon spin qubits, but state preparation and readout fidelities have generally

Ultra-low loss quantum photonic circuits integrated with single quantum emitters

December 12, 2022
Ashish Chanana, Hugo Larocque, Renan Moreira, Jacques Carolan, Biswarup Guha, Emerson Goncalves De Melo, Vikas Anant, Jin Dong Song, Dirk Englund, Daniel Blumenthal, Marcelo Davanco, Kartik Srinivasan
Photon-based photonic quantum information systems require both scalable ultra-low loss photonic circuits and high-flux sources of single-photons. Direct integration of these sources and circuits is critical to realizing quantum systems that are scalable

Role of Non-Temperature-Gradient Power Flow Terms in Low-Temperature Regenerators

December 1, 2022
Ryan Snodgrass, Joel Ullom, Scott Backhaus
The total power flow through cryocooler regenerators is key to their performance because it reduces the cooling available at the cold heat exchanger. At temperatures near 4 K, the real-fluid properties of helium and the finite-heat-capacity of regenerator

The Mathematics of Quantum Coin-Flipping

December 1, 2022
Carl A. Miller
An expository article (aimed at the general mathematics community) about quantum cryptography and the philosophy of applied mathematics. The article focuses on quantum coin-flipping, a research problem that has a particularly long history.

Constructing quantum many-body scar Hamiltonians from Floquet automata

November 22, 2022
Michael Gullans, Pierre-Gabriel Rozon, Kartiek Agarwal
We provide a systematic approach for constructing approximate quantum many-body scars (QMBS) starting from two-layer Floquet automaton circuits that exhibit trivial many-body re- vivals. We do so by applying successively more restrictions that force local

Dynamical Instability of 3d Stationary and Traveling Planar Dark Solitons

November 9, 2022
Ian Spielman, Amilson R. Fritsch, T. Mithun, Panayotis Kevrekidis
Here we revisit the topic of stationary and propagating solitonic excitations in self-repulsive three-dimensional Bose-Einstein condensates by quantitatively comparing theoretical analysis and associated numerical computations with our experimental results

Lattice-Based Quantum Advantage from Rotated Measurements

October 18, 2022
Yusuf Alnawakhtha, Atul Mantri, Carl A. Miller, Daochen Wang
Trapdoor claw-free functions (TCFs) are immensely valuable in cryptographic interactions between a classical client and a quantum server. Typically, a protocol has the quantum server prepare a superposition of two bit strings from a claw and then measure

Hybrid Quantum-Edge Computing: A New Computing Paradigm

October 4, 2022
Lijun Ma, Leah Ding
Edge computing has emerged to support the computational demand of delay-sensitive applications in which substantial computing and storage are deployed at the network edge in close proximity to data sources. The vision of a hybrid quantum-edge is to provide

Portable polarization-entangled photon source & receiver toolset for quantum network metrology

October 4, 2022
Anouar Rahmouni, Thomas Gerrits, Paulina Kuo, Dileep Reddy, Lijun Ma, Xiao Tang, Oliver T. Slattery
A quantum network will consist of many physically separated nodes connected by quantum communication channels that distribute entanglement between them. Such nodes will require mechanisms for the generation, routing, and measurement of quantum states to

Towards entangled photon pair generation from SiC-based microring resonator

October 4, 2022
Anouar Rahmouni, Lijun Ma, Xiao Tang, Thomas Gerrits, Lutong Cai, Qing Li, Oliver T. Slattery
Entangled photon sources are fundamental building blocks for quantum communication and quantum networks. Recently, silicon carbide emerged as a promising material for integrated quantum devices since it is CMOS compatible with favorable mechanical

Single-atom trapping in a metasurface-lens optical tweezer

August 1, 2022
Ting-Wei Hsu, Wenqi Zhu, Tobias Thiele, Mark Brown, Scott Papp, Amit Agrawal, Cindy Regal
Single neutral atoms in optical tweezers have become an important platform for quantum simulation, computing, and metrology [1-3]. With ground-up control similar to trapped ions, individual atoms can be prepared and entangled [2, 4, 5], and the scalability

Experimental Realization of Neutron Helical Waves

May 11, 2022
Michael G. Huber, Charles W. Clark, Dmitry Pushin, Connor Kapahi, Lisa DeBeer-Schmitt, David Cory, Huseyin Ekinci, Melissa Henderson, Dusan Sarenac
Methods of preparation and analysis of structured waves of light, electrons, and atoms have been advancing rapidly. Despite the proven power of neutrons for material characterization and studies of fundamental physics, neutron science has not been able to

A self-validated detector for characterization of quantum network components

May 7, 2022
Anouar Rahmouni, Thomas Gerrits, Alan Migdall, Oliver T. Slattery, Ping-Shine Shaw, Joseph P. Rice
We are developing a nearly polarization-independent, low-cost optical trap detector between 1000 nm and 1550 nm for optical power measurements. A NIST-traceable optical power calibration of this trap detector showed a promising result.

White Rabbit-assisted quantum network node synchronization with quantum channel coexistence

May 7, 2022
Thomas Gerrits, Ivan Burenkov, Ya-Shian Li-Baboud, Anouar Rahmouni, DJ Anand, FNU Hala, Oliver T. Slattery, Abdella Battou, Sergey Polyakov
We show that the Ethernet-based time transfer protocol 'White Rabbit' can synchronize two distant quantum-networked nodes to within 4 ps, enabling HOM interference at >90 % visibility using 17.6 ps FWHM single-photons coexisting with White Rabbit.

Quantum computing hardware for HEP algorithms and sensing

April 19, 2022
Corey Rae McRae
Quantum information science harnesses the principles of quantum mechanics to realize computational algorithms with complexities vastly intractable by current computer platforms. Typical applications range from quantum chemistry to optimization problems and
Displaying 1 - 25 of 755