Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

NIST Authors in Bold

Displaying 1 - 25 of 892

Automation of Quantum Dot Measurement Analysis via Explainable Machine Learning

January 13, 2025
Author(s)
Daniel Schug, Tyler Kovach, Michael Wolfe, Jared Benson, Sanghyeok Park, J. P. Dodson, Joelle Corrigan, Mark Eriksson, Justyna Zwolak
The rapid development of quantum dot (QD) devices for quantum computing has necessitated more efficient and automated methods for device characterization and tuning. Many of the measurements acquired during the tuning process come in the form of images

Nagaoka ferromagnetism in 3 * 3 arrays and beyond

December 26, 2024
Author(s)
Yan Li, Keyi Liu, Garnett Bryant
Nagaoka ferromagnetism (NF) is a long-predicted example of itinerant ferromagnetism (IF) in the Hubbard model that has been studied theoretically for many years. The condition for NF, an infinite onsite Coulomb repulsion and a single hole in a half-filled

Disseminable single-photon source for quantum radiometry

December 24, 2024
Author(s)
Hristina Georgieva, Thomas Gerrits, Lijun Ma, Riley Dawkins, Marco Lopez, Oliver Slattery, Sven Rodt, Stephan Reitzenstein, Alan Migdall, Stefan Kueck
We present a disseminable single-photon source based on an InGaAs quantum dot in a micro-mesa. This source achieves a maximum photon flux of 2.8 million photons/s at a wavelength of 929.7 nm, with a multi-photon suppression of g(2)(0) = 0.22. The

Noiseless Loss Suppression for Entanglement Distribution

December 2, 2024
Author(s)
Cory Nunn, Daniel Jones, Todd Pittman, Brian Kirby
Recent work by Mičuda et al. [Phys. Rev. Lett 109, 180503 (2012)] suggests that pairing noiseless amplification with noiseless attenuation can conditionally suppress loss terms in the direct transmission of quantum states. Here we extend this work to

Spectroscopic Measurements and Models of Energy Deposition in the Substrate of Quantum Circuits by Natural Ionizing Radiation

November 12, 2024
Author(s)
Joseph Fowler, Paul Szypryt, Raymond Bunker, Ellen Edwards, Ian Fogarty Florang, JIANSONG GAO, Shannon Hoogerheide, Ben Loer, Hans Mumm, Nathan Nakamura, John Orrell, Elizabeth M. Scott, Jason Stevens, Daniel Swetz, Brent VanDevender, Michael Vissers, Joel Ullom
Naturally occurring background radiation is a potential source of correlated decoherence events in superconducting qubits that will challenge error-correction schemes. In order to characterize the radiation environment in an unshielded laboratory

Kinetic inductance current sensor for visible to near-infrared wavelength transition-edge sensor readout

November 6, 2024
Author(s)
Paul Szypryt, Douglas Bennett, Ian Fogarty Florang, Joseph Fowler, Jiansong Gao, Andrea Giachero, Ruslan Hummatov, Adriana Lita, John Mates, Sae Woo Nam, Daniel Swetz, Joel Ullom, Michael Vissers, Jordan Wheeler
Single-photon detectors based on the superconducting transition-edge sensor are used in a number of visible to near-infrared applications, particularly for photon-number-resolving measurements in quantum information science. To be practical for large-scale

Data needs and challenges for quantum dot devices automation

October 31, 2024
Author(s)
Justyna Zwolak, Jacob Taylor, Reed Andrews, Jared Benson, Garnett Bryant, Donovan Buterakos, Anasua Chatterjee, Sankar Das Sarma, Mark Eriksson, Eliska Greplova, Michael Gullans, Fabian Hader, Tyler Kovach, Pranav S. Mundada, Mick Ramsey, Torbjoern Rasmussen, Brandon Severin, Anthony Sigillito, Brennan Undseth, Brian Weber
Gate-defined quantum dots are a promising candidate system for realizing scalable, coupled qubit systems and serving as a fundamental building block for quantum computers. However, present-day quantum dot devices suffer from imperfections that must be

Optical Studies of Silicon Color Centers and CC-LEDs for Consideration as Telecom Quantum Light Sources

October 29, 2024
Author(s)
Nikki Ebadollahi, Pradeep Namboodiri, Vijin Kizhake Veetil, Marcelo Davanco, Kartik Srinivasan, Aaron Katzenmeyer, Matthew Pelton, Joshua Pomeroy
We synthesized and studied color centers on silicon-on-insulator wafers with photoluminescence mapping and spectroscopy, and fabricated silicon W- and G- color center LEDs towards electrically-pumped single photon sources.

Clock synchronization characterization of the Washington DC metropolitan quantum network (DC-QNet)

October 16, 2024
Author(s)
Wayne McKenzie, Anne Marie Richards, Shirali Patel, Thomas Gerrits, T. G., Steven Peil, Adam Black, David Tulchinsky, Alexander Hastings, YaShian Li-Baboud, Anouar Rahmouni, Paulina Kuo, Alan Mink, Ivan Burenkov, Yicheng Shi, Matthew Diaz, Nijil Lal Cheriya Koyyottummal, Mheni Merzouki, Pranish Shrestha, Alejandro Rodriguez Perez, Eleanya Onuma, Daniel Jones, Atiyya Davis, Thomas A. Searles, J.D. Whalen, Kate Collins, Qudsia Quraishi, La Vida Cooper, Harry Shaw, Bruce Crabill, Oliver Slattery, Abdella Battou
Quantum networking protocols relying on interference and precise time-of-flight measurements require high-precision clock synchronization. This study describes the design, implementation, and characterization of two optical time transfer methods in a

Comparison of Three Methods for Oscillating Flow Measurements in Cryocoolers

October 16, 2024
Author(s)
Ryan Snodgrass, Vincent Kotsubo, Joel Ullom
Measurement of oscillating mass flows is typically required for the study of cryocoolers and cryocooler compressors. Although many measurement techniques are used in the cryocooler literature, detailed comparisons are lacking, so it can be challenging for

Fast Ground State to Ground State Separation of Small Ion Crystals

October 10, 2024
Author(s)
Tyler Gugliemo, Dietrich Leibfried, Stephen Libby, Daniel Slichter
Rapid separation of linear crystals of trapped ions into different subsets is critical for realizing trapped ion quantum computing architectures where ions are rearranged in trap arrays to achieve all-to-all connectivity between qubits. We introduce a

Hidden-State Proofs of Quantumness

October 8, 2024
Author(s)
Carl A. Miller
An experimental cryptographic proof of quantumness — that is, a proof, based only on well-studied cryptographic assumptions, that a physical device is performing quantum computations — will be a vital milestone in the progress of quantum information

Strong interactions between integrated microresonators and alkali atomic vapors: towards single-atom, single-photon operation

September 24, 2024
Author(s)
Roy Zekzer, Xiyuan Lu, Khoi Hoang, Rahul Shrestha, Sharoon Austin, Feng Zhou, Ashish Chanana, Glenn Holland, Daron Westly, Paul Lett, Alexey Gorshkov, Kartik Srinivasan
Cavity quantum electrodynamics (cQED), the interaction of a two-level system with a high quality factor (Q) cavity, is a foundational building block in different architectures for quantum computation, communication, and metrology. The strong interaction

Phase transition in magic with random quantum circuits

September 23, 2024
Author(s)
Michael Gullans
Maic is a resource that enables quantum computation and quantifies the efficacy of a quantum state for universal fault-tolerant quantum computing. Understanding the mechanisms by which magic is created or destroyed is, therefore, a crucial step towards

Flexible superconducting wiring for integration with low temperature detector and readout fabrication

September 14, 2024
Author(s)
Galen O'Neil, Daniel Swetz, Joel Ullom, Daniel Schmidt, Joel Weber, John Mates, William Doriese, Mark Keller, Michael Vissers, Kelsey Morgan, Robinjeet Singh
We present a method of creating high density superconducting flexible wiring on flexible thin silicon substrates. The flexible wiring, called SOI flex, is created by depositing superconducting wiring on a silicon on insulator (SOI) wafer, selectively

Zero-temperature entanglement membranes in quantum circuits

August 13, 2024
Author(s)
Grace Sommers, Sarang Gopalakrishnan, Michael Gullans, David Huse
In chaotic quantum systems, the entanglement of a region A can be described in terms of the surface tension of a spacetime membrane pinned to the boundary of A. Here, we interpret the tension of this "entanglement membrane" in terms of the rate at which

Quantum Lego Expansion Pack: Enumerators from Tensor Networks

July 22, 2024
Author(s)
ChunJun Cao, Michael Gullans, Brad Lackey, Zitao Wang
We provide the first tensor network method for computing quantum weight enumerator polynomials in the most general form. As a corollary, if a quantum code has a known tensor network construction of its encoding map, our method produces an algorithm that

Assessing the Benefits and Risks of Quantum Computers

July 17, 2024
Author(s)
Travis Scholten, Carl Williams, Dustin Moody, Michele Mosca, William Hurley, William J. Zeng, Matthias Troyer, Jay Gambetta
Quantum computing is an emerging technology with potentially far-reaching implications for national prosperity and security. Understanding the timeframes over which economic benefits and national security risks may manifest themselves is vital for ensuring

Bell Sampling from Quantum Circuits

July 8, 2024
Author(s)
Dominik Hangleiter, Michael Gullans
A central challenge in the verification of quantum computers is benchmarking their performance as a whole and demonstrating their computational capabilities. In this work, we find a model of quantum computation, Bell sampling, that can be used for both of

100-km entanglement distribution with coexisting quantum and classical signals in a single fiber

July 5, 2024
Author(s)
Anouar Rahmouni, Paulina Kuo, Ya-Shian Li-Baboud, Ivan Burenkov, Yicheng Shi, Jabir Marakkarakath Vadakkepurayil, Nijil Lal Cheriya Koyyottummal, Dileep Reddy, Mheni Merzouki, Lijun Ma, Abdella Battou, Sergey Polyakov, Oliver T. Slattery, Thomas Gerrits
The development of prototype metropolitan-scale quantum networks is underway and entails transmitting quantum information via single photons through deployed optical fibers spanning several tens of kilometers. Among the major challenges in metropolitan

Perfect cheating is impossible for single-qubit position verification

June 28, 2024
Author(s)
Carl A. Miller, Yusuf Alnawakhtha
In quantum position verification, a prover certifies her location by performing a quantum computation and returning the results (at the speed of light) to a set of trusted verifiers. One of the very first protocols for quantum position verification was

Exact and approximate fluxonium array modes

June 26, 2024
Author(s)
Stephen Sorokanich, Neill Warrington, Max Hays
We present an exact solution for the array modes of fluxonium. This solution holds for arrays of any length and ground capacitance. Array mode energies are determined by convex combinations of Chebyshev polynomials and their spatial profiles are plane

Entangled photon pair generation in an integrated SiC platform

May 9, 2024
Author(s)
Anouar Rahmouni, Lijun Ma, Ruixuan Wang, Jingwei Li, Xiao Tang, Thomas Gerrits, Qing Li, Oliver T. Slattery
Entanglement plays a vital role in quantum information processing. Owing to its unique material properties, silicon carbide recently emerged as a promising candidate for the scalable implementation of advanced quantum information processing capabilities
Displaying 1 - 25 of 892