Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

NIST Authors in Bold

Displaying 1 - 25 of 690

Quantum coding with low-depth random circuits

September 24, 2021
Michael Gullans, David A. Huse, Stefan Krastanov, Liang Jiang, Steven T. Flammia
Random quantum circuits have played a central role in establishing the computational advantages of near-term quantum computers over their conventional counterparts. Here, we use ensembles of low-depth random circuits with local connectivity in D ≥ 1

Motional Squeezing for Trapped Ion Transport and Separation

August 20, 2021
Robert Sutherland, Shaun Burd, Daniel Slichter, Stephen Libby, Dietrich Leibfried
Transport, separation, and merging of trapped ion crystals are essential operations for most large-scale quantum computing architectures. In this Letter, we develop a theoretical framework that describes the dynamics of ions in time-varying potentials with

Programmable System on Chip for controlling an atomic physics experiment

July 23, 2021
Ananya Sitaram, Gretchen K. Campbell, Alessandro Restelli
Most atomic physics experiments are controlled by a digital pattern generator used to synchronize all equipment by providing triggers and clocks. Recently, the availability of well-documented open-source development tools has lifted the barriers to using

Hyperspectral study of the coupling between trions in WSe2 monolayers to a circular Bragg grating cavity

June 25, 2021
Marcelo I. Davanco, Oliver Iff, Simon Betzold, Magdalena Moczala-Dusanowska, Matthias Wurdack, Monika Emmerling, Sven Hofling, Christian Schneider
Circular Bragg gratings compose a very appealing photonic platform and nanophotonic interfacefor the controlled light-matter coupling of emitters in nanomaterials. Here, we discuss the integration ofexfoliated monolayers of WSe2with GaInP Bragg gratings

Ray-based framework for state identification in quantum dot devices

June 17, 2021
Justyna Zwolak, Thomas McJunkin, Sandesh Kalantre, Samuel Neyens, Evan MacQuarrie, Mark A. Eriksson, Jacob Taylor
Quantum dots (QDs) defined with electrostatic gates are one of the leading candidates for scaling up the number of qubits in quantum computing implementations. However, with increasing qubit number, the complexity of the control parameter space also grows

Demonstration that Einstein-Podolsky-Rosen Steering Requires More than One Bit of Faster-than-Light Information Transmission

June 9, 2021
Yu Xiang, Michael Mazurek, Joshua Bienfang, Michael Wayne, Carlos Abellan, Waldimar Amaya, Morgan Mitchell, Richard Mirin, Sae Woo Nam, Qiongyi He, Martin Stevens, Lynden Shalm, Howard Wiseman
Schrödinger held that a local quantum system has some objectively real quantum state and no other (hidden) properties. He therefore took the Einstein-Podolsky-Rosen (EPR) phenomenon, which he generalized and called 'steering', to require nonlocal

High-performance semiconductor quantum dot-single- photon sources

June 3, 2021
Glenn S. Solomon
Single photons are a key, fundamental element of most quantum optical technologies, be it for the development of large-scale quantum communication networks, for quantum simulation, or for connecting quantum memories in a quantum computer. The ideal single

Coherence and decoherence in the Harper-Hofstadter model

May 19, 2021
Ian Spielman, Qiyu Liang, Dimi Trypogeorgos, Ana Valdes-Curiel, Junheng Tao, Mingshu Zhao
We quantum simulated the 2D Harper-Hofstadter (HH) lattice model in a highly elongated tube geometry—three sites in circumference—using an atomic Bose-Einstein condensate. In addition to the usual transverse (out-of-plane) magnetic flux, piercing the

Entanglement and purification transitions in non-Hermitian quantum mechanics

April 30, 2021
Michael Gullans, Sarang Gopalakrishnan
A quantum system subject to continuous measurement and post-selection evolves according to a non- Hermitian Hamiltonian. We show that, as one increases the rate of post-selection, this non- Hermitian Hamiltonian can undergo a spectral phase transition. On

Practical quantum-enhanced receivers for classical communication

April 20, 2021
Ivan Burenkov, Jabir Marakkarakath Vadakkepurayil, Sergey Polyakov
Communication is an integral part of human life. Today, optical pulses are the preferred information carriers for long-distance communication. The exponential growth in data leads to a "capacity crunch" in the underlying physical systems. One of the

Quantum circuits with many photons on a programmable nanophotonic chip

April 19, 2021
Adriana Lita, Sae Woo Nam, Thomas Gerrits, J. M. Arrazola, V. Bergholm, K Bradler, T R. Bromley, M J. Collins, I Dhand, A Fumagalli, A Goussev, L G. Helt, J Hundal, T Isacsson, R B. Israel, N Quesada, V D. Vaidya, Z Vernon, Y Zhang
Growing interest in quantum computing for practical applications has led to a surge in the availability of programmable machines for loading and executing quantum algorithms. Photonic quantum computers have been limited either to non-deterministic

Compact and Tunable Forward Coupler Based on High-Impedance Superconducting Nanowires

February 25, 2021
Marco Colangelo, Di Zhu, Daniel F. Santavicca, Brenden Butters, Joshua Bienfang, Karl K. Berggren
Developing compact, low-dissipation, cryogenic-compatible microwave electronics is essential for scaling up low-temperature quantum computing systems. In this paper, we demonstrate an ultracompact microwave directional forward coupler based on high

A simple low-latency real-time certifiable quantum random number generator

February 24, 2021
Yanbao Zhang, Hsin-Pin Lo, Alan Mink, Takuya Ikuta, Toshimori Honjo, Hiroki Takesue, William Munro
Quantum random numbers distinguish themselves from others by their intrinsic unpredictability arising from the principles of quantum mechanics. As such they are extremely useful in many scientific and real-world applications with considerable efforts going

The membership problem for constant-sized quantum correlations is undecidable

January 26, 2021
Carl Miller, Honghao Fu, William Slofstra
When two spatially separated parties make measurements on an unknown entangled quantum state, what correlations can they achieve? How difficult is it to determine whether a given correlation is a quantum correlation? These questions are central to problems

Developing Single Layer MOS Quantum Dots for Diagnostic Qubits

December 28, 2020
Yanxue Hong, Aruna Ramanayaka, Ryan Stein, Joshua M. Pomeroy
The design, fabrication and characterization of single metal gate layer, metal-oxide- semiconductor (MOS) quantum dot devices robust against dielectric breakdown are presented as prototypes for future diagnostic qubits. These devices were developed as a

Josephson Microwave Sources Applied to Quantum Information Systems

December 18, 2020
Adam J. Sirois, Manuel C. Castellanos Beltran, Anna E. Fox, Samuel P. Benz, Peter F. Hopkins
Quantum computers with thousands or millions of qubits will require a scalable solution for qubit control and readout electronics. Colocating these electronics at millikelvin temperatures has been proposed and demonstrated, but there exist significant

The joint automated repository for various integrated simulations (JARVIS) for data-driven materials design

November 12, 2020
Kamal Choudhary, Kevin Garrity, Andrew C. Reid, Brian DeCost, Adam Biacchi, Angela R. Hight Walker, Zachary Trautt, Jason Hattrick-Simpers, Aaron Kusne, Andrea Centrone, Albert Davydov, Francesca Tavazza, Jie Jiang, Ruth Pachter, Gowoon Cheon, Evan Reed, Ankit Agrawal, Xiaofeng Qian, Vinit Sharma, Houlong Zhuang, Sergei Kalinin, Ghanshyam Pilania, Pinar Acar, Subhasish Mandal, David Vanderbilt, Karin Rabe
The Joint Automated Repository for Various Integrated Simulations (JARVIS) is an integrated infrastructure to accelerate materials discovery and design using density functional theory (DFT), classical force-fields (FF), and machine learning (ML) techniques

Reduction of charge offset drift using plasma oxidized aluminum in SETs

October 26, 2020
Yanxue Hong, Ryan Stein, Michael Stewart, Neil M. Zimmerman, Joshua M. Pomeroy
Aluminum oxide (AlOx)-based single-electron transistors (SETs) fabricated in ultra-high vacuum (UHV) chambers using in situ plasma oxidation show excellent stabilities over more than a week, enabling applications as tunnel barriers, capacitor dielectrics
Displaying 1 - 25 of 690