Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

NIST Authors in Bold

Displaying 1 - 25 of 706

Demonstration that Einstein-Podolsky-Rosen Steering Requires More than One Bit of Faster-than-Light Information Transmission

January 4, 2022
Yu Xiang, Michael Mazurek, Joshua Bienfang, Michael Wayne, Carlos Abellan, Waldimar Amaya, Morgan Mitchell, Richard Mirin, Sae Woo Nam, Qiongyi He, Marty Stevens, Krister Shalm, Howard Wiseman
Schrödinger held that a local quantum system has some objectively real quantum state and no other (hidden) properties. He therefore took the Einstein-Podolsky-Rosen (EPR) phenomenon, which he generalized and called 'steering', to require nonlocal

Geometric interference in a high-mobility graphene annulus p-n junction device

January 3, 2022
Son Le, Albert Rigosi, Joseph Hagmann, Christopher Gutierrez, Ji Ung Lee, Curt A. Richter
The emergence of interference is observed in the resistance of a graphene annulus pn junction device as a result of applying two separate gate voltages. The observed resistance patterns are carefully inspected, and it is determined that the position of the

Measurement of electric-field noise from interchangeable samples with a trapped-ion sensor

November 18, 2021
Kyle McKay, Dustin Hite, Philip D. Kent, Shlomi S. Kotler, Dietrich Leibfried, Daniel Slichter, Andrew C. Wilson, David P. Pappas
We demonstrate the use of a single trapped ion as a sensor to probe electric-field noise from interchangeable test surfaces. As proof of principle, we measure the magnitude and distance dependence of electric-field noise from two ion-trap-like samples with

Quantum coding with low-depth random circuits

September 24, 2021
Michael Gullans, David A. Huse, Stefan Krastanov, Liang Jiang, Steven T. Flammia
Random quantum circuits have played a central role in establishing the computational advantages of near-term quantum computers over their conventional counterparts. Here, we use ensembles of low-depth random circuits with local connectivity in D ≥ 1

Motional Squeezing for Trapped Ion Transport and Separation

August 20, 2021
Robert Sutherland, Shaun Burd, Daniel Slichter, Stephen Libby, Dietrich Leibfried
Transport, separation, and merging of trapped ion crystals are essential operations for most large-scale quantum computing architectures. In this Letter, we develop a theoretical framework that describes the dynamics of ions in time-varying potentials with

Quantum-enhanced sensing of displacements and electric fields with large trapped-ion crystals

August 6, 2021
Kevin Gilmore, Matthew Affolter, Judith Jordan, Diego Barberena, Robert Lewis-Swan, Ana Maria Rey, John Bollinger
Developing the isolation and control of ultracold atomic systems to the level of single quanta has led to significant advances in quantum sensing, yet demonstrating a quantum advantage in real world applications by harnessing entanglement remains a core

Programmable System on Chip for controlling an atomic physics experiment

July 23, 2021
Ananya Sitaram, Gretchen K. Campbell, Alessandro Restelli
Most atomic physics experiments are controlled by a digital pattern generator used to synchronize all equipment by providing triggers and clocks. Recently, the availability of well-documented open-source development tools has lifted the barriers to using

Hyperspectral study of the coupling between trions in WSe2 monolayers to a circular Bragg grating cavity

June 25, 2021
Marcelo I. Davanco, Oliver Iff, Simon Betzold, Magdalena Moczala-Dusanowska, Matthias Wurdack, Monika Emmerling, Sven Hofling, Christian Schneider
Circular Bragg gratings compose a very appealing photonic platform and nanophotonic interfacefor the controlled light-matter coupling of emitters in nanomaterials. Here, we discuss the integration ofexfoliated monolayers of WSe2with GaInP Bragg gratings

Ray-based framework for state identification in quantum dot devices

June 17, 2021
Justyna Zwolak, Thomas McJunkin, Sandesh Kalantre, Samuel Neyens, Evan MacQuarrie, Mark A. Eriksson, Jacob Taylor
Quantum dots (QDs) defined with electrostatic gates are one of the leading candidates for scaling up the number of qubits in quantum computing implementations. However, with increasing qubit number, the complexity of the control parameter space also grows

High-performance semiconductor quantum dot-single- photon sources

June 3, 2021
Glenn S. Solomon
Single photons are a key, fundamental element of most quantum optical technologies, be it for the development of large-scale quantum communication networks, for quantum simulation, or for connecting quantum memories in a quantum computer. The ideal single

Coherence and decoherence in the Harper-Hofstadter model

May 19, 2021
Ian Spielman, Qiyu Liang, Dimi Trypogeorgos, Ana Valdes-Curiel, Junheng Tao, Mingshu Zhao
We quantum simulated the 2D Harper-Hofstadter (HH) lattice model in a highly elongated tube geometry—three sites in circumference—using an atomic Bose-Einstein condensate. In addition to the usual transverse (out-of-plane) magnetic flux, piercing the

Entanglement and purification transitions in non-Hermitian quantum mechanics

April 30, 2021
Michael Gullans, Sarang Gopalakrishnan
A quantum system subject to continuous measurement and post-selection evolves according to a non- Hermitian Hamiltonian. We show that, as one increases the rate of post-selection, this non- Hermitian Hamiltonian can undergo a spectral phase transition. On

Practical quantum-enhanced receivers for classical communication

April 20, 2021
Ivan Burenkov, Jabir Marakkarakath Vadakkepurayil, Sergey Polyakov
Communication is an integral part of human life. Today, optical pulses are the preferred information carriers for long-distance communication. The exponential growth in data leads to a "capacity crunch" in the underlying physical systems. One of the

Quantum circuits with many photons on a programmable nanophotonic chip

April 19, 2021
Adriana Lita, Sae Woo Nam, Thomas Gerrits, J. M. Arrazola, V. Bergholm, K Bradler, T R. Bromley, M J. Collins, I Dhand, A Fumagalli, A Goussev, L G. Helt, J Hundal, T Isacsson, R B. Israel, N Quesada, V D. Vaidya, Z Vernon, Y Zhang
Growing interest in quantum computing for practical applications has led to a surge in the availability of programmable machines for loading and executing quantum algorithms. Photonic quantum computers have been limited either to non-deterministic

Efficient and low-backaction measurement of a superconducting qubit

March 3, 2021
Eric Rosenthal, Christian M. Schneider, Maxime Malnou, Ziyi Zhao, Felix Leditzky, Benjamin Chapman, Waltraut Wustmann, Xizheng Ma, Daniel A. Palken, Leila R. Vale, Gene C. Hilton, Jiansong Gao, Graeme Smith, Gerhard Kirchmair, Konrad Lehnert

Compact and Tunable Forward Coupler Based on High-Impedance Superconducting Nanowires

February 25, 2021
Marco Colangelo, Di Zhu, Daniel F. Santavicca, Brenden Butters, Joshua Bienfang, Karl K. Berggren
Developing compact, low-dissipation, cryogenic-compatible microwave electronics is essential for scaling up low-temperature quantum computing systems. In this paper, we demonstrate an ultracompact microwave directional forward coupler based on high

A simple low-latency real-time certifiable quantum random number generator

February 24, 2021
Yanbao Zhang, Hsin-Pin Lo, Alan Mink, Takuya Ikuta, Toshimori Honjo, Hiroki Takesue, William Munro
Quantum random numbers distinguish themselves from others by their intrinsic unpredictability arising from the principles of quantum mechanics. As such they are extremely useful in many scientific and real-world applications with considerable efforts going
Displaying 1 - 25 of 706