NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Anton Zubchenko, Danielle Middlebrooks, Torbjoern Rasmussen, Lara Lausen, Ferdinand Kuemmeth, Anasua Chatterjee, Justyna Zwolak
Abstract
Semiconductor quantum dots (QDs) are a promising platform for multiple different qubit implementations, all of which are voltage controlled by programmable gate electrodes. However, as the QD arrays grow in size and complexity, tuning procedures that can fully autonomously handle the increasing number of control parameters are becoming essential for enabling scalability. We propose a bootstrapping algorithm for initializing a depletion-mode QD device in preparation for subsequent phases of tuning. During bootstrapping, the QD device functionality is validated, all gates are characterized, and the QD charge sensor is made operational. We demonstrate the bootstrapping protocol in conjunction with a coarse-tuning module, showing that the combined algorithm can efficiently and reliably take a cooled-down QD device to a desired global-state configuration in under 8 min with a success rate of 96 %. Finally, by following heuristic approaches to QD device initialization and combining the efficient ray-based measurement with the rapid radio-frequency reflectometry measurements, the proposed algorithm establishes a reference in terms of performance, reliability, and efficiency against which alternative algorithms can be benchmarked.
Zubchenko, A.
, Middlebrooks, D.
, Rasmussen, T.
, Lausen, L.
, Kuemmeth, F.
, Chatterjee, A.
and Zwolak, J.
(2025),
Autonomous bootstrapping of quantum dot devices, Physical Review Applied, [online], https://doi.org/10.1103/PhysRevApplied.23.014072, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=958410
(Accessed October 20, 2025)