Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

NIST Authors in Bold

Displaying 7426 - 7450 of 74106

Guide for Security-Focused Configuration Management of Information Systems

October 11, 2019
Author(s)
Arnold Johnson, Kelley L. Dempsey, Ronald S. Ross, Sarbari Gupta, Dennis Bailey
[Includes updates as of October 10, 2019] Guide for Security-Focused Configuration Management of Information Systems provides guidelines for organizations responsible for managing and administering the security of federal information systems and associated

Microscopic origin of the chiroptical response of optical media

October 11, 2019
Author(s)
Matthew S. Davis, Wenqi Zhu, Jay K. Lee, Henri Lezec, Amit Agrawal
The potential for enhancing the optical activity of natural chiral media using engineered nanophotonic components has been central in the quest towards developing next-generation circular-dichroism spectroscopic techniques. Through confinement and

Nanobolometer with ultralow noise equivalent power

October 11, 2019
Author(s)
Roope J. Kokkoniemi, Joonas Govenius, Visa Vesterinen, Russell Lake, A M. Gunyho, K-Y Tan, S Simbierowicz, Leif Gronberg, J Lehtinen, M Prunnila, Juha Hassel, Antti Lamminen, O P. Saira, Mikko Mottonen
Since the introduction of bolometers more than a century ago, they have been used in various applications ranging from chemical sensors, consumer electronics, and security to particle physics and astronomy. However, faster bolometers with lower noise are

Primary standardization of Ra-224 activity by liquid scintillation counting

October 11, 2019
Author(s)
Denis E. Bergeron, Jeffrey T. Cessna, Ryan P. Fitzgerald, Brian E. Zimmerman, Lizbeth Laureano-Perez, Ronald Colle, Leticia S. Pibida, Elisa Napoli
A standard for 224Ra activity has been developed, based on triple-to-double coincidence ratio (TDCR) liquid scintillation (LS) counting. The standard was confirmed by efficiency tracing and 4παβ(LS)-γ(NaI(Tl)) anticoincidence counting, as well as by 4πγ

Topology, Landscapes, and Biomolecular Energy Transport

October 11, 2019
Author(s)
Justin E. Elenewski, Kirill Velizhanin, Michael P. Zwolak
While ubiquitous, energy redistribution remains a poorly understood facet of the nonequilibrium thermodynamics of biomolecules. At the molecular level, finite-size effects, pronounced nonlinearities, and ballistic processes conspire to produce behavior

Detecting Sub-GeV Dark Matter with Superconducting Nanowires

October 10, 2019
Author(s)
Varun Verma, Sae Woo Nam, Ilya Charaev, Marco Colangelo, Karl Berggren, Yonit Hochberg
We propose the use of superconducting nanowires as both target and sensor for direct detection of light dark matter. With excellent sensitivity to low-energy deposits on electrons, and demonstrated low dark counts, such devices could be used to probe

State-independent quantum tomography of a single-photon state by photon-number-resolving measurements

October 10, 2019
Author(s)
Thomas Gerrits, Adriana Lita, Sae Woo Nam, Rajveer Nehra, Aye Win, Miller Eaton, Niranjan Sridhar, R. Shahrokhshahi, O Pfister
A narrowband single-photon state was generated by heralding cavity-enhanced spontaneous parametric downconversion in a PPKTP optical parametric oscillator. The Wigner quasiprobability distribution function was reconstructed, in a state-independent manner

Topographic Measurement of Individual Laser Tracks in Alloy 625 Bare Plates

October 10, 2019
Author(s)
Richard E. Ricker, Jarred C. Heigel, Brandon M. Lane, Ivan Zhirnov, Lyle E. Levine
Additive manufacturing (AM) combines all of the complexities of materials processing and manufacturing into a single process. The digital revolution made this combination possible, but the commercial viability of these technologies for critical parts may

A Purely Algebraic Justification of the Kabsch-Umeyama Algorithm

October 9, 2019
Author(s)
James F. Lawrence, Javier Bernal, Christoph J. Witzgall
The constrained orthogonal Procrustes problem is the least-squares problem that calls for a rotation matrix that optimally aligns two matrices of the same order. Over past decades, the algorithm of choice for solving this problem has been the Kabsch

Observation of Strong Polarization Enhancement in Ferroelectric Tunnel Junctions

October 9, 2019
Author(s)
Linze Li, Xiaoxing Cheng, Thomas Blum, Huaixun Huyan, Yi Zhang, Colin A. Heikes, Xingxu Yan, Chaitanya Gadre, Toshihiro Aoki, Mingjie Xu, Lin Xie, Zijian Hong, Carolina Adamo, Darrell G. Schlom, Long-Qing Chen, Xiaoqing Pan
Ferroelectric heterostructures, with capability of storing data at ultrahigh densities, could act as the platform for next-generation memories. The development of new device paradigms has been hampered by the long-standing notion of inevitable

Are Reported Likelihood Ratios Well Calibrated?

October 8, 2019
Author(s)
Peter Vallone, Sarah Riman, Jan Hannig
In this work we introduce a new statistical methodology for empirically examining the validity of model-based Likelihood Ratio (LR) systems by applying a general statistical inference approach called generalized fiducial inference [1]. LR systems are

Generation and Detection of Spin-Orbit Coupled Neutron Beams

October 8, 2019
Author(s)
Dusan Sarenac, Connor Kapahi, Wangchun Chen, Charles W. Clark, David G. Cory, Michael G. Huber, Ivar Taminiau, Kirill Zhernenkov, Dmitry A. Pushin
Spin-orbit coupling of light has come to the fore in nano-optics and plasmonics, and is a key ingredient of topological photonics and chiral quantum optics. We demonstrate a basic tool for incorporating analogous effects into neutron optics: the generation

A Simulation Platform to Study the Human Body Communication Channel

October 7, 2019
Author(s)
Kamran Sayrafian, Katjana Krhac, Gregory Noetscher, Dina Simunic
Human Body Communication (HBC) is an attractive low complexity technology with promising applications in wearable biomedical sensors. In this paper, a simple parametric model based on the finite-element method (FEM) using a full human body model is

Optimized heat transfer at exceptional points in quantum circuits

October 7, 2019
Author(s)
Matti Partanen, Jan Goetz, K-Y Tan, Kassius Kohvakka, Vasilii Sevriuk, Russell Lake, Roope J. Kokkoniemi, Joni Ikonen, Dibyendu Hazra, Akseli Makinen, Eric Hyyppa, Leif Gronberg, Visa Vesterinen, Matti Silveri, Mikko Mottonen
Superconducting quantum circuits are potential candidates to realize a large-scale quantum computer. The envisioned large density of integrated components, however, requires a proper thermal management and control of dissipation. To this end, it is
Displaying 7426 - 7450 of 74106