Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

Search Title, Abstract, Conference, Citation, Keyword or Author
  • Published Date
Displaying 151 - 175 of 1131

Quantum back-action limits in dispersively measured Bose-Einstein condensates

April 8, 2023
Author(s)
Ian Spielman, Emine Altuntas
A fundamental tenet of quantum mechanics is that measurements change a system's wavefunction to that most consistent with the measurement outcome, even if no observer is present. Weak measurements produce only limited information about the system, and as a

Lower Bounds on Quantum Annealing Times

April 5, 2023
Author(s)
Luis Pedro Garcia-Pintos, Lucas Brady, Jacob Bringewatt, Yi-Kai Liu
The adiabatic theorem provides sufficient conditions for the time needed to prepare a target ground state. While it is possible to prepare a target state much faster with more general quantum annealing protocols, rigorous results beyond the adiabatic

Integrating planar photonics for multi-beam generation and atomic clock packaging on chip

April 3, 2023
Author(s)
Chad Ropp, Wenqi Zhu, Alexander Yulaev, Daron Westly, Gregory Simelgor, Akash Rakholia, William Lunden, Dan Sheredy, Martin Boyd, Scott Papp, Amit Agrawal, Vladimir Aksyuk
The commercialization of atomic technologies requires replacing laboratory-scale laser setups with compact and manufacturable optical platforms. Complex arrangements of free-space beams can be generated on chip through a combination of integrated photonics

Toward improved quantum simulations and sensing with trapped two-dimensional ion crystals via parametric amplification

March 29, 2023
Author(s)
Matthew Affolter, Wenchao Ge, Bryce Bullock, Shaun Burd, Kevin Gilmore, Jennifer Lilieholm, Allison Carter, John J. Bollinger
Improving coherence is a fundamental challenge in quantum simulation and sensing experiments with trapped ions. Here we discuss, experimentally demonstrate, and estimate the potential impacts of two different protocols that enhance, through motional

Interference induced anisotropy in a two-dimensional dark state optical lattice

March 27, 2023
Author(s)
Ian Spielman, Gediminas Juzeliunas, Edvinas Gvozdiovas
We describe a two-dimensional optical lattice for ultracold atoms with spatial structure below the diffraction limit created by a bichromatic optical standing wave. At every point in space these fields couple the internal atomic states in a three-level

Determination of electron beam energy in measuring the electron-impact ionization cross section of He-like Fe24+

March 17, 2023
Author(s)
Yuri Ralchenko, Galen O'Neil, Paul Szypryt, Joseph N. Tan, Aung S. Naing, Yang Yang, Dipti Dipti, Amy Gall, Adam Hosier, David Schultz, Randall Smith, Nancy Brickhouse, Endre Takacs
In an effort to measure electron-impact ionization (EII) cross sections of He-like $Fe^24+}$ at the electron beam ion trap (EBIT) facility of the National Institute of Standards and Technology (NIST), we have experimentally determined the corrections to

The effect of electric field inhomogeneity in Rydberg atom-based electric field sensing

March 8, 2023
Author(s)
Samuel Berweger, Nikunjkumar Prajapati, Andrew Rotunno, Alexandra Artusio-Glimpse, Matthew Simons, Christopher Holloway
The use of Rydberg atoms for radio frequency electric field sensing has emerged as a promising alternative to traditional antenna-based designs that enables all-optial readout. However, the need for atomic vapor cells comprised of dielectric materials can

Background and blended spectral line reduction in precision spectroscopy of EUV and x-ray transitions in highly charged ions

March 3, 2023
Author(s)
Yuri Ralchenko, Joseph N. Tan, Aung S. Naing, Galen O'Neil, Paul Szypryt, Dipti Dipti, Grant Mondeel, Roshani Silwal, Alain Lapierre, Steven Blundell, Gerald Gwinner, Antonio Camargo Villari, Endre Takacs
We report a method in EBIT spectral analysis that reduces signal from contaminant lines of 1 known or unknown origin. We utilize similar ion charge distributions of heavy highly charged ions 2 that create similar potentials for lighter contaminating
Was this page helpful?