Skip to main content

NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.

Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.

U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

Search Title, Abstract, Conference, Citation, Keyword or Author
  • Published Date
Displaying 176 - 200 of 661

Dark solitons in Bose-Einstein condensates: a dataset for many-body physics research

December 21, 2022
Author(s)
Amilson R. Fritsch, Shangjie Guo, Sophia Koh, Ian Spielman, Justyna Zwolak
We establish a dataset of over 1.6 x 10^4 experimental images of Bose–Einstein condensates containing solitonic excitations to enable machine learning (ML) for many-body physics research. About 33 % of this dataset has manually assigned and carefully

Precise Quantum Measurement of Vacuum with Cold Atoms

December 20, 2022
Author(s)
Daniel Barker, Bishnu Acharya, James A. Fedchak, Nikolai Klimov, Eric Norrgard, Julia Scherschligt, Eite Tiesinga, Stephen Eckel
We describe the cold-atom vacuum standards (CAVS) under development at the National Institute of Standards and Technology. The CAVS measures pressure in the ultra-high and extreme-high vacuum regimes by measuring the loss rate of sub-millikelvin sensor

Constructing quantum many-body scar Hamiltonians from Floquet automata

November 22, 2022
Author(s)
Michael Gullans, Pierre-Gabriel Rozon, Kartiek Agarwal
We provide a systematic approach for constructing approximate quantum many-body scars (QMBS) starting from two-layer Floquet automaton circuits that exhibit trivial many-body re- vivals. We do so by applying successively more restrictions that force local

Optical Atomic Clock aboard an Earth-orbiting Space Station (OACESS): Enhancing searches for physics beyond the standard model in space

November 18, 2022
Author(s)
Vladimir Schkolnik, Dmitry Budker, Oliver Farttman, Victor Flambaum, Leo Hollberg, Tigran Kalaydzhyan, Shimon Kolkowitz, Markus Krutzik, Andrew Ludlow, Nathan R. Newbury, Christopher Pyrlik, Laura Sinclair, Yevgeny Stadnik, Ingmari Tietje, Jun Ye, Jason Williams
We present a concept for a high-precision optical atomic clock (OAC) operating on an Earth-orbiting space station. This pathfinder science mission will compare the space-based OAC with one or more ultra-stable terrestrial OACs to search for space-time

Dynamical Instability of 3d Stationary and Traveling Planar Dark Solitons

November 9, 2022
Author(s)
Ian Spielman, Amilson R. Fritsch, T. Mithun, Panayotis Kevrekidis
Here we revisit the topic of stationary and propagating solitonic excitations in self-repulsive three-dimensional Bose-Einstein condensates by quantitatively comparing theoretical analysis and associated numerical computations with our experimental results

Scalable Quantum Logic Spectroscopy

November 2, 2022
Author(s)
Kaifeng Cui, Jose Valencia, Kevin Boyce, Ethan Clements, David Leibrandt, David Hume
In quantum logic spectroscopy (QLS), one species of trapped ion is used as a sensor to detect the state of an otherwise inaccessible ion species. This extends precision measurements to a broader class of atomic and molecular systems for applications like

Tip-enhanced Raman scattering for atomic-scale spectroscopy and imaging

October 24, 2022
Author(s)
Jeremy Schultz
Atomic scale spectroscopy provides an exceptional ability to define electronic, optical, thermal, mechanical, and chemical properties of materials at the nanoscale. At these scales, dimensional confinement can lead to new and unusual properties, where the

Periodic Table of the Elements

October 5, 2022
Author(s)
Karen Olsen
The periodic table contains NIST's latest critically evaluated data for atomic properties of the elements.

High-accuracy optical clocks based on group 16-like highly charged ions

October 3, 2022
Author(s)
Saleh Allehabi, Samuel Brewer, Vladimir Dzuba, Victor Flambaum, Kyle Beloy
We identify laser-accessible transitions in group 16-like highly charged ions as candidates for high-accuracy optical clocks, including S-, Se-, and Te-like systems. For this class of ions, the ground 3PJ fi ne structure manifold exhibits irregular

Periodic Table of the Elements

September 30, 2022
Author(s)
Karen Olsen
The periodic table contains NIST's latest critically evaluated data for atomic properties of the elements.

Sub-recoil clock-transition laser cooling enabling shallow optical lattice clocks

September 8, 2022
Author(s)
Xiaogang Zhang, Kyle Beloy, Youssef Hassan, William McGrew, Chun-Chia Chen, Jacob Siegel, Tanner Grogan, Andrew Ludlow
Laser cooling is a key ingredient for quantum control of atomic systems in a variety of settings. In two-valence-electron atoms, two-stage Doppler cooling is typically used to bring atoms to the μK regime. Here, we implement a pulsed radial cooling scheme

Connecting entropy scaling and density scaling

August 17, 2022
Author(s)
Ian Bell, Robin Fingerhut, Jadran Vrabec, Lorenzo Costigliola
It is shown that the residual entropy (entropy minus that of the ideal gas at the same temperature and density) is mostly synonymous with the independent variable of density scaling, identifying a direct link between these two approaches. The residual

Complete collision data set for electrons scattering on molecular hydrogen and its isotopologues: III. Vibrational excitation via electronic excitation and radiative decay.

August 10, 2022
Author(s)
Dmitry Fursa, Mark Zammit, Igor Bray, Liam Scarlett, Daniel Boyle, Yuri Ralchenko
We present cross sections for vibrational excitation via electronic excitation followed by radiative decay (ERD), for electrons scattering on all bound vibrational levels of the ground electronic state (X 1Σ+ g ) of molecular hydrogen and its isotopologues

Single-atom trapping in a metasurface-lens optical tweezer

August 1, 2022
Author(s)
Ting-Wei Hsu, Wenqi Zhu, Tobias Thiele, Mark Brown, Scott Papp, Amit Agrawal, Cindy Regal
Single neutral atoms in optical tweezers have become an important platform for quantum simulation, computing, and metrology [1-3]. With ground-up control similar to trapped ions, individual atoms can be prepared and entangled [2, 4, 5], and the scalability
Was this page helpful?