Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Quantum back-action limits in dispersively measured Bose-Einstein condensates

Published

Author(s)

Ian Spielman, Emine Altuntas

Abstract

A fundamental tenet of quantum mechanics is that measurements change a system's wavefunction to that most consistent with the measurement outcome, even if no observer is present. Weak measurements produce only limited information about the system, and as a result only minimally change the system's state. Here, we theoretically and experimentally characterize quantum back-action in atomic Bose-Einstein condensates interacting with a far-from resonant laser beam. We theoretically describe this process using a quantum trajectories approach where the environment measures the scattered light and present a measurement model based on an ideal photodetection mechanism. We experimentally quantify the resulting wavefunction change in terms of the contrast of a Ramsey interferometer and control parasitic effects associated with the measurement process. The observed back-action is in good agreement with our measurement model; this result is a necessary precursor for achieving true quantum back-action limited measurements of quantum gases.
Citation
Nature Communications Physics

Citation

Spielman, I. and Altuntas, E. (2023), Quantum back-action limits in dispersively measured Bose-Einstein condensates, Nature Communications Physics, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=935338 (Accessed December 5, 2023)
Created April 8, 2023, Updated May 12, 2023