Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

Search Title, Abstract, Conference, Citation, Keyword or Author
  • Published Date
Displaying 126 - 150 of 1131

Inverse Transform Sampling for Efficient Doppler-Averaged Spectroscopy Simulations

July 14, 2023
Author(s)
Drew Rotunno, Nik Prajapati, Samuel Berweger, MATTHEW SIMONS, Aly Artusio-Glimpse, Amy Robinson, chris holloway
We present a thermal velocity sampling method for calculating Doppler-broadened atomic spectra, which more efficiently reaches a smooth limit than regular velocity weighted sampling. The method uses equal-population sampling of the 1-D thermal distribution

Multi-mode Gaussian State Analysis with Total Photon Counting

July 11, 2023
Author(s)
Arik Avagyan, Scott Glancy, Emanuel Knill
The continuing improvement in the qualities of photon-number-resolving (PNR) detectors opens new possibilities for measuring quantum states of light. In this work we consider the question of what properties of an arbitrary multi-mode Gaussian state are

Weak-Measurement-Induced Heating in Bose-Einstein Condensates

June 23, 2023
Author(s)
Emine Altuntas, Ian Spielman
Ultracold atoms are an ideal platform for understanding system-reservoir dynamics of many-body systems. Here, we study quantum back-action in atomic Bose-Einstein condensates, weakly interacting with a far-from resonant, i.e., dispersively interacting

Quantum-limited optical time transfer for future geosynchronous links

June 21, 2023
Author(s)
Emily Caldwell, Jean-Daniel Deschenes, Jennifer Ellis, William C. Swann, Benjamin Stuhl, Hugo Bergeron, Nathan R. Newbury, Laura Sinclair
The combination of optical time transfer and optical clocks opens up the possibility of large-scale free-space networks that connect both ground-based optical clocks and future space-based optical clocks. Such networks promise better tests of general

A chip-scale atomic beam clock

June 13, 2023
Author(s)
Gabriela Martinez, Chao Li, Alexander Staron, John Kitching, Chandra Raman, William McGehee
We demonstrate a passively pumped, chip-scale atomic beam clock fabricated using a stack of silicon and glass wafers. The device could additionally serve as a platform for compact atom interferometers and other future quantum sensors.

Feedback cooled Bose-Einstein condensation: near and far from equilibrium

June 13, 2023
Author(s)
Ian Spielman, Hilary Hurst, Evan Yamaguchi
Continuously measured interacting quantum systems almost invariably heat, causing loss of quantum coherence. Here we study Bose-Einstein condensates (BECs) subject to repeated weak measurement of the atomic density and describe several protocols for

An ultra-low noise bipolar current source

June 6, 2023
Author(s)
Ian Spielman, Alessandro Restelli, Mingshu Zhao, Junheng Tao, Qiyu Liang
The precise control of dc magnetic fields is crucial in wide range of experimental platforms, from ultracold quantum gases, nuclear magnetic resonance, to precision measurements. In each of these cases the Zeeman effect causes quantum states to shift in

Proof-of-Principle Experiment for Testing Strong-Field Quantum Electrodynamics with Exotic Atoms: High Precision X-Ray Spectroscopy of Muonic Neon

April 27, 2023
Author(s)
Douglas Bennett, W.Bertrand (Randy) Doriese, Malcolm Durkin, Joseph Fowler, Johnathon Gard, Gene C. Hilton, Kelsey Morgan, Galen O'Neil, Carl D. Reintsema, Dan Schmidt, Daniel Swetz, Joel Ullom, Takuma Okumura
To test the bound-state quantum electrodynamics (BSQED), we have performed high precision x- ray spectroscopy of the 5g→4f and 5f→4d transitions (BSQED contribution of 2.4 eV and 5.2 eV, respectively) of muonic neons in the low-pressure gas phase under the

Trap-Integrated Superconducting Nanowire Single-Photon Detectors with Improved RF Tolerance for Trapped-Ion Qubit State Readout

April 24, 2023
Author(s)
Benedikt Hampel, Daniel Slichter, Dietrich Leibfried, Richard Mirin, Sae Woo Nam, Varun Verma
State readout of trapped-ion qubits with trap-integrated detectors can address important challenges for scalable quantum computing, but the strong radio frequency (rf) electric fields used for trapping can impact detector performance. Here, we report on
Was this page helpful?