NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Yang Yang, Dipti Dipti, Chihiro Suzukic, A. C. Gall, R. Silwal, Samuel Sanders, Joseph N. Tan, Aung S. Naing, Endre Takacs, Yuri Ralchenko
Extreme ultraviolet (EUV) radiation from M-shell Ca-like, Nd40+, through Nalike, Nd49+, highly charged ions have been measured at an electron beam ion trap (EBIT) facility at the National Institute of Standards and Technology. To produce the ionization
Nik Prajapati, Aly Artusio-Glimpse, Matt Simons, Samuel Berweger, Drew Rotunno, Maitreyi Jayaseelan, Kaleb Campbell, Christopher L. Holloway
Rydberg atoms show great promise for use as self-calibrated electric field sensors for a broad range of frequencies. Their response is traceable to the international system of units making them a valuable tool for a variety of applications including
Daniel Barker, James A. Fedchak, Jacek Klos, Julia Scherschligt, Abrar Sheikh, Eite Tiesinga, Stephen Eckel
We present measurements of thermalized collisional rate coefficients for ultra-cold $^7$Li and $^87}$Rb colliding with room-temperature He, Ne, N$_2$, Ar, Kr, and Xe. In our experiments, a combined flowmeter and dynamic expansion system, a vacuum metrology
Barry I. Schneider, luca argenti, Siddhartha Chattopadhyay, carlos marante, Jeppe Olsen
As a step toward the full ab-initio description of two-photon double ionization processes, we present a finitepulse version of the virtual-sequential model for polyelectronic atoms. The model relies on the ab initio description of the single ionization
Drew Rotunno, Nik Prajapati, Samuel Berweger, MATTHEW SIMONS, Aly Artusio-Glimpse, Amy Robinson, chris holloway
We present a thermal velocity sampling method for calculating Doppler-broadened atomic spectra, which more efficiently reaches a smooth limit than regular velocity weighted sampling. The method uses equal-population sampling of the 1-D thermal distribution
The continuing improvement in the qualities of photon-number-resolving (PNR) detectors opens new possibilities for measuring quantum states of light. In this work we consider the question of what properties of an arbitrary multi-mode Gaussian state are
Luke Caldwell, Tanya Roussy, Trevor Wright, William Cairncross, Yuval Shagam, Kia Boon Ng, Noah Schlossberger, Sun Yool Park, Anzhou Wang, Jun Ye, Eric A. Cornell
Ultracold atoms are an ideal platform for understanding system-reservoir dynamics of many-body systems. Here, we study quantum back-action in atomic Bose-Einstein condensates, weakly interacting with a far-from resonant, i.e., dispersively interacting
Emily Caldwell, Jean-Daniel Deschenes, Jennifer Ellis, William C. Swann, Benjamin Stuhl, Hugo Bergeron, Nathan R. Newbury, Laura Sinclair
The combination of optical time transfer and optical clocks opens up the possibility of large-scale free-space networks that connect both ground-based optical clocks and future space-based optical clocks. Such networks promise better tests of general
Gabriela Martinez, Chao Li, Alexander Staron, John Kitching, Chandra Raman, William McGehee
We demonstrate a passively pumped, chip-scale atomic beam clock fabricated using a stack of silicon and glass wafers. The device could additionally serve as a platform for compact atom interferometers and other future quantum sensors.
Continuously measured interacting quantum systems almost invariably heat, causing loss of quantum coherence. Here we study Bose-Einstein condensates (BECs) subject to repeated weak measurement of the atomic density and describe several protocols for
Ian Spielman, Alessandro Restelli, Mingshu Zhao, Junheng Tao, Qiyu Liang
The precise control of dc magnetic fields is crucial in wide range of experimental platforms, from ultracold quantum gases, nuclear magnetic resonance, to precision measurements. In each of these cases the Zeeman effect causes quantum states to shift in
We propose a method for continuously compensating for the polarization state change of photons propagating in fibers. This technique operates at a single-photon-level intensity and therefore imposes minimal noise on the quantum channel.
A majority of ultracold atom experiments utilize resonant absorption imaging techniques to obtain the atomic density. To make well-controlled quantitative measurements, the optical intensity of the probe beam must be precisely calibrated in units of the
Douglas Bennett, W.Bertrand (Randy) Doriese, Malcolm Durkin, Joseph Fowler, Johnathon Gard, Gene C. Hilton, Kelsey Morgan, Galen O'Neil, Carl D. Reintsema, Dan Schmidt, Daniel Swetz, Joel Ullom, Takuma Okumura
To test the bound-state quantum electrodynamics (BSQED), we have performed high precision x- ray spectroscopy of the 5g→4f and 5f→4d transitions (BSQED contribution of 2.4 eV and 5.2 eV, respectively) of muonic neons in the low-pressure gas phase under the
Benedikt Hampel, Daniel Slichter, Dietrich Leibfried, Richard Mirin, Sae Woo Nam, Varun Verma
State readout of trapped-ion qubits with trap-integrated detectors can address important challenges for scalable quantum computing, but the strong radio frequency (rf) electric fields used for trapping can impact detector performance. Here, we report on
Samuel Berweger, Nikunjkumar Prajapati, Alexandra Artusio-Glimpse, Andrew Rotunno, Roger Brown, chris holloway, MATTHEW SIMONS, Eric Imhof, Steven Jefferts, Michael Viray, Baran Kayim, Robert Wyllie, Brian Sawyer, Thad Walker