Skip to main content

NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.

Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.

U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

Search Title, Abstract, Conference, Citation, Keyword or Author
  • Published Date
Displaying 701 - 725 of 2493

Distributing Time and Frequency Information

December 15, 2020
Author(s)
Judah Levine
This chapter discusses the statistics that are used to characterize the performance of clocks, oscillators, and the networks that are used to calibrate and synchronize and calibrate clocks and oscillators by means of data received from global navigation

Wafer-Level Fabrication of Alkali Vapor Cells Using In-Situ Atomic Deposition

December 14, 2020
Author(s)
Douglas Bopp, Vincent N. Maurice, John Kitching
We demonstrate a new technique for filling microfabricated silicon and glass cavities with alkali vapors at the wafer-scale. A single etched silicon wafer contains an array of cavities containing alkali precursor materials offset laterally from the cell

Lifetime-Limited Interrogation of Two Independent 27Al+ Clocks using Correlation Spectroscopy

December 9, 2020
Author(s)
Ethan Clements, May E. Kim, Kaifeng Cui, Aaron M. Hankin, Samuel M. Brewer, Jose Valencia, Jwo-Sy Chen, Chin-wen Chou, David Leibrandt, David Hume
Laser decoherence limits the stability of optical clocks by broadening the observable resonance linewidths and adding noise during the dead time between clock probes. Correlation spectroscopy avoids these limitations by measuring correlated atomic

Symmetry breaking and error correction in open quantum systems

December 8, 2020
Author(s)
Simon K. Lieu, Ron Belyansky, Jeremy T. Young, Rex Lundgren, Victor Albert, Alexey Gorshkov
Symmetry-breaking transitions are a well-understood phenomenon of closed quantum systems in quantum optics, condensed matter, and high energy physics. However, symmetry breaking in open systems is less thoroughly understood, in part due to the richer

Simplify your life

December 2, 2020
Author(s)
Gordon Drake, Eite Tiesinga
Within the Hartree atomic unit systems, the Schrödinger equation becomes parameter free. But there's more to it than making a student's life easier, as Gordon Drake and Eite Tiesinga recount.

Phase-coherent sensing of the center-of-mass motion of trapped-ion crystals

November 9, 2020
Author(s)
Matthew Affolter, Kevin Gilmore, Elena Jordan, John Bollinger
Measurements of the center-of-mass motion of a trapped-ion crystal that are phase- coherent with an external force are reported. These experiments are conducted far from the trap motional frequency on a two-dimensional trapped ion crystal of approximately

Broadening of the drumhead mode spectrum due to in-plane thermal fluctuations of two-dimensional trapped-ion crystals in a Penning trap

November 5, 2020
Author(s)
Athreya Shankar, Chen Tang, Matthew Affolter, Kevin Gilmore, Daniel H. Dubin, Scott E. Parker, Murray Holland, John Bollinger
Two-dimensional crystals of ions stored in Penning traps are a leading platform for quantum simulation and sensing experiments. For small amplitudes, the out-of-plane motion of such crystals, which is exploited for quantum information protocols, can be

Quadruply-ionized barium as a candidate for a high-accuracy optical clock

October 23, 2020
Author(s)
Kyle Beloy, Vladimir A. Dzuba, Samuel Brewer
We identify Ba$^4+}$ (Te-like) as a promising candidate for a high-accuracy optical clock. The lowest-lying electronic states are part of a $^3P_J$ fine structure manifold with anomalous energy ordering, being non-monotonic in $J$. We propose a clock based

FPGA-based Low-Latency Digital Servo for Optical Physics Experiments

October 22, 2020
Author(s)
Marco Pomponio, Archita Hati, Craig Nelson
We propose a general-purpose dual-channel field-programmable gate array (FPGA) based digital servo with a minimum latency around 200 ns. This servo implements a proportional, dual- integration and derivative (PIID) controller along with internal numerical

Semiconducting to Metallic Electronic Landscapes in Defects Controlled Two-Dimensional ?-d Conjugated Coordination Polymer Thin Films

October 16, 2020
Author(s)
Cherno Jaye, Daniel Fischer, Jonathan Ogle, Nabajit Lahiri, Christopher Tassone, Janis Louie, Luisa Whittaker-Brooks
Two-dimensional coordination polymers (2D CPs) are of significant interest due to their intriguing structural, optical, and electrical properties which can be tuned through the selective coordination of different metals and organic linkers. Although, 2D

Enhanced observation time of magneto-optical traps using micro-machined non-evaporable getter pumps

October 6, 2020
Author(s)
Rodolphe Boudot, James P. McGilligan, Kaitlin R. Moore, Vincent N. Maurice, Gabriela Martinez, Azure L. Hansen, E. de Clercq, Elizabeth Donley, John Kitching
We show that micro-machined non-evaporable getter pumps (NEGs) can extend the time over which laser cooled atoms can be produced in a magneto-optical trap (MOT), in the absence of other vacuum pumping mechanisms. In a first study, we incorporate a silicon

Harnessing dispersion in soliton microcombs to mitigate thermal noise

October 5, 2020
Author(s)
Jordan Stone, Scott Papp
We explore intrinsic thermal noise in soliton microcombs, revealing thermodynamic correlations induced by nonlinearity and group-velocity dispersion. A suitable dispersion design gives rise to control over thermal-noise transduction from the environment to
Was this page helpful?