Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

Search Title, Abstract, Conference, Citation, Keyword or Author
  • Published Date
Displaying 101 - 125 of 2328

Electrical Switching the Perpendicular Neel Order in a Collinear Antiferromagnet

November 1, 2024
Author(s)
Wenqing He, Tianyi Zhang, Yongjian Zhou, Caihua Wan, Hao Wu, Baoshan Cui, Jihao Xia, Ran Zhang, Tengyu Guo, Peng Chen, Mingkun Zhao, Leina Jiang, Alexander Grutter, Purnima P. Balakrishnan, Andrew Caruana, Christy Kinane, Sean Langridge, Guoqiang Yu, Cheng Song, Xiufeng Han
Spintronics is based on the electrical manipulation of magnetic order through current-induced spin torques. In collinear antiferromagnets with perpendicular magnetic anisotropy, binary states can be directly encoded in their opposite Néel order. The

Progress in development of characterization capabilities to evaluate candidate materials for direct air capture applications

November 1, 2024
Author(s)
Marcus Carter, Huong Giang Nguyen, Andrew Allen, Feng Yi, Wei-Chang Yang, Avery Baumann, William S. McGivern, Jeffrey A. Manion, Ivan Kuzmenko, Zois Tsinas, Charlotte Wentz, Malia Wenny, Daniel Siderius, Roger van Zee, Christopher Stafford, Craig Brown
As part of U.S. national efforts to combat the detrimental effect of global climate change, the National Institute of Standards and Technology (NIST) was recently tasked to support efforts in direct air capture (DAC) of carbon dioxide research and

Two-fluid model for nonlinear flow of wormlike micelle solutions. I: Model

November 1, 2024
Author(s)
Paul Salipante, Michael Cromer, Steven D. Hudson
We develop a rheological model to approximate the nonlinear rheology of wormlike micelles using two constitutive models to represent a structural transition at high shear rates. The model is intended to describe the behavior of semidilute wormlike micellar

Two-fluid model for nonlinear flow of wormlike micelle solutions. II: Experiment

November 1, 2024
Author(s)
Paul Salipante, Michael Cromer, Steven D. Hudson
Applications often expose wormlike micelle solutions to a very wide range of shear and temperature conditions. The two-species model presented in Part I [Salipante et al., J. Rheol. 68 (2024)] describes the nonlinear rheology over a wide range of shear

Microstructure and mechanical properties of laser powder bed fusion Ti-6Al-4V after HIP treatments with varied temperatures and cooling rates

October 22, 2024
Author(s)
Nicholas Derimow, Jake Benzing, Howard Joress, Austin McDannald, Ping Lu, Frank DelRio, Newell Moser, Matthew Connolly, Alec Saville, Orion Kafka, Chad Beamer, Ryan Fishel, Chris Hadley, Nikolas Hrabe
This work investigated non-standard HIP cycles for PBF-L Ti-6Al-4V and characterized microstructure and tensile properties to compare between material that originated from the same build. For 920 °C, faster cooling rates (100 °C/min, 2000 °C/min) were

Self-diffusion of liquid deuterium hydride and liquid tritium

October 8, 2024
Author(s)
T. Prisk, S. Hanna, Richard Azuah
We present a quasi-elastic neutron scattering study of liquid deuterium hydride carried out using the Disk Chopper Spectrometer at the National Institute of Standards and Technology. Under saturated vapor pressure, the self-diffusion constant of deuterium

Speed of Sound for Understanding Metals in Extreme Environments

October 7, 2024
Author(s)
Elizabeth Rasmussen, Boris Wilthan
Knowing material behavior is crucial to successful design, especially given the growing number of next-generation energy, defense, and manufacturing systems operating in extreme environments. Specific applications for materials in extreme environments

Visualizing Shockwave Interactions and Sub-Catastrophic Damage in Materials via Mechanophores

October 7, 2024
Author(s)
Polette Centellas, Kyle Mehringer, Andrew Bowman, Katherine Evans, Parth Vagholkar, Travis Thornell, Liping Huang, Sarah Morgan, Christopher Soles, Yoan Simon, Edwin Chan
Understanding the physical and chemical response of materials to impulsive deformation is crucial for applications ranging from soft robotic locomotion to space exploration to seismology. However, investigating material properties at extreme strain rates

Vertically Graded Fe-Ni Alloys with Low Damping and a Sizeable Spin-Orbit Torque

October 4, 2024
Author(s)
Rachel Maizel, Shuang Wu, Purnima P. Balakrishnan, Alexander Grutter, Christy Kinane, Andrew Caruana, Prabandha Nakarmi, Bhuwan Nepal, David Smith, Youngmin Lim, Juila Jones, Wyatt Thomas, Jing Zhao, F. Michel, Tim Mewes, Satoru Emori
Energy-efficient spintronic devices require a large spin-orbit torque (SOT) and low damping to excite magnetic precession. In conventional devices with heavy-metal/ferromagnet bilayers, reducing the ferromagnet thickness to approximately 1 nm enhances the

Nanotechnology solutions for the climate crisis

October 1, 2024
Author(s)
Maria F. Campa, Craig Brown, Peter Byrley, Jason Delborne, Nicholas Glavin, Craig Green, Mark Griep, Tina Kaarsberg, Igor Linkov, Jeffrey B. Miller, Joshua E. Porterfield, Birgit Schwenzer, Quinn Spadola, Branden Brough, James Warren
Climate change is one of humankind's biggest challenges, leading to more frequent and intense climate extremes, including heatwaves, wildfires, hurricanes, ocean acidification, and increased extinction rates. Nanotechnology already plays an important role

Setting standards for data driven materials science

October 1, 2024
Author(s)
Keith Butler, Kamal Choudhary, Gabor Csanyi, Alex Ganose, Sergei Kalinin, Dane Morgan
A young Steve Jobs once called computers 'bicycles for the mind' – he was referring to the dramatic decrease in the energetic cost of transportation that could be obtained with the bicycle, which breaks all scaling laws for how efficiently an animal can

Effects of Weathering and Formulation on the Properties of Vinyl Siding

September 23, 2024
Author(s)
Ronald Lankone, Mauro Zammarano, Song Jhang, Ickchan Kim, David Goodwin, Gianluca Sarti, Stefano Gardi, Camillo Cardelli, Lipiin Sung
Vinyl siding has become a popular choice for residential exteriors across the United States. In its insulated form, this siding includes a shell, capstock, and substrate, that encase a foamed material, serving as an efficient insulating material. While it

Insights into transient photovoltage lifetimes via dark J-V analysis in perovskite solar cells

September 23, 2024
Author(s)
Ganga Neupane, John Roller, Susanna Thon, Sheng Fu, Zhaoning Song, Yanfa Yan, Behrang Hamadani
Transient photovoltage (TPV) decay measurements have commonly been used to estimate the charge carrier lifetimes in solar cell devices. However, it has recently been demonstrated that an intrinsic material property such as the effective bulk carrier

Synthesis, Structure, and Ion Conduction of Potassium Carbazolides for Potassium Ion Solid-State Electrolytes

September 20, 2024
Author(s)
Jiaquan Guo, Yang Yu, Khai Chen Tan, Qijun Pei, Zhao Li, Yuting Wang, Alexis Munyentwali, Hui Wu, Teng He, Ping Chen
Potassium ion batteries gradually have aroused worldwide interest due to the limited lithium resource. However, the research on the solid-state potassium-ion batteries is at its very early stage. The lack of electrolytes with high ionic conductivity and in

Effect of Cosolvents on the Phase Separation of Polyelectrolyte Complexes

September 13, 2024
Author(s)
Yuanchi Ma, Robert Ivancic, Jan Obrzut, Debra Audus, Vivek Prabhu
Evidence is shown that cosolvent mixtures control the coacervation of mixtures of oppositely charged polyelectrolytes. Binary and ternary solvent mixtures lead to non-monotonic solubility as a function of measured average dielectric constants of the

Complex Precipitation Behavior in a Co-free High Entropy Alloy during Aging

September 11, 2024
Author(s)
Matthew Luebbe, Fan Zhang, Jonathan Poplawsky, Jiaqi Duan, Haiming Wen
High entropy alloys (HEAs) demonstrate high strength, thermal stability, and irradiation resistance, making them desirable for applications in nuclear reactors and other harsh environments. Many existing HEAs contain cobalt (Co), which makes them
Was this page helpful?