An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Vitor R. Coluci, Socrates de Oliveira Dantas Dantas, Vinod Tewary
A Green's function formalism has been applied to solve the equations of motion in classical molecular dynamics simulations. This formalism enables larger time scales to be probed for vibration processes in carbon nanomaterials. In Green's function
Gretchen Greene, Jared Ragland, Zachary Trautt, June W. Lau, Raymond Plante, Joshua Taillon, Adam Abel Creuziger, Chandler A. Becker, Joe Bennett, Niksa Blonder, Lisa Borsuk, Carelyn E. Campbell, Adam Friss, Lucas Hale, Michael Halter, Robert Hanisch, Gary R. Hardin, Lyle E. Levine, Samantha Maragh, Sierra Miller, Chris Muzny, Marcus William Newrock, John Perkins, Anne L. Plant, Bruce D. Ravel, David J. Ross, John Henry J. Scott, Christopher Szakal, Alessandro Tona, Peter Vallone
Instrumentation generates data faster and in higher quantity than ever before, and interlaboratory research is in historic demand domestically and internationally to stimulate economic innovation. Strategic mission needs of the NIST Material Measurement
Abbey J. Neer, Joanna Milam-Guerrero, Veronika A. Fischer, Michelle Zheng, Nicole R. Spence, Clayton Cozzan, Mingqiang Gu, James M. Rondinelli, Craig Brown, Brent C. Melot
We present a comparative study of the magnetic and crystal chemical proper-ties of two Co 2+ containing garnets.CaY 2Co 2Ge 3O 12 and NaCa 2Co 2V 3O 12 both exhibit the onset of antiferromagnetic order at 8 K and 6 K as well as field-induced transitions
Dean Pierce, Jake Benzing, Jose Jimenez, Tilmann Hickel, Ivan Bleskov, Jong Keum, Dierk Raabe, Jim Wittig
The influence of temperature and stacking fault energy (SFE) on the strain-hardening behavior and critically resolved shear stress for twinning was investigated for three Fe–22/25/28Mn–3Al–3Si wt.% transformation- and twinning-induced plasticity (TRIP/TWIP
Cherno Jaye, Daniel A. Fischer, Mokwon Kim, Hyunpyo Lee, Hyuk Jae Kwon, Seong-Min Bak, Gabin Lee, Jung O. Park, Dong-Hwa Seo, Song Bok Ma, Dongmin Im
The development of a cathode for solid-state lithium-oxygen batteries has been hindered in practice by a low capacity and limited cycle life despite their potential for high energy density. Here, a previously unexplored strategy is proposed wherein the
Elias Sebti, Hayden Evans, Hengning Chen, Peter Richardson, Kelly White, Raynald Giovine, Krishna P. Koirala, Yaobin Xu, Eliovardo Gonzalez-Correa, Chongmin Wang, Craig Brown, Anthony Cheetham, Pieremanuele Canepa, Raphaele Clement
In the pursuit of urgently-needed, energy dense solid-state batteries for electric vehicle and portable electronics applications, halide solid electrolytes offer a promising path forward with exceptional compatibility against high-voltage oxide electrodes
Jonathan Denney, Gerard Mattei, Marcus Mendenhall, James Cline, Peter Khalifah, Brian Toby
Abstract Abstract A methodology is developed where a fundamental parameters approach (FPA) description of a laboratory powder diffraction instrument (configured in divergent beam Bragg-Brentano geometry) is used to determine GSAS-II profile parameters for
Jazalyn Dukes, David Goodwin, Siamak Sattar, Li Piin Sung
FR composites have become popular for use as retrofit solutions for buildings and infrastructure due to their ease of application, lightweight properties, and corrosion resistance. However, there are still many research needs in this area that hinder wider
We present a series of polyamide membranes synthesized via molecular layer-by-layer (mLbL) deposition, using a combination of two acid chlorides: trimesoyl chloride (TMC) and isophthaloyl chloride (IPC), and one of two diamines: m¬-phenylenediamine (MPD)
Resonant Soft X-ray Scattering (RSoXS) is an emerging, powerful technique to probe the nano-to-mesoscale ordering of polymers and other molecules. It joins together small-angle X-ray scattering (a statistical nanoprobe) with X-ray spectroscopy that brings
John Barker, James Moyer, Steven Kline, G. Jensen, Jeremy Cook, Cedric Gagnon, Elizabeth Kelley, Jean Philippe Chabot, Nicholas C. Maliszewskyj, Chirag Parikh, Wangchun Chen, Ryan Murphy, C. Glinka
A description and the performance of the Very Small-Angle Neutron Scattering (VSANS) Diffractometer at the National Institute of Standards and Technology are presented. The measurement range of the instrument extends over three decades of momentum transfer
Eliot Gann, Christopher McNeill, Doan Vu, Martyn Jervic, Chao Wang, Lars Thomsen, Mats Andersson
Terpolymerization is a facile and effective strategy to control the aggregation and crystallinity of semiconducting polymers which has been exploited to improve the photovoltaic performance of all-polymer solar cells (all-PSCs). Applying this strategy to
Dianne L. Poster, Matthew Hardwick, C Cameron Miller, Michael A. Riley, W. W. Shanaka I. Rodrigo, Andras E. Vladar, John D. Wright, Christopher D. Zangmeister, Clarence Zarobila, Jeremy Starkweather, John Wynne, Jason Yilzarde
Data for interpreting virus inactivation on N95 face filtering respirators (FFRs) by ultraviolet (UV) radiation are important in developing UV strategies for N95 FFR disinfection and reuse for any situation, whether it be everyday practices, contingency
Sugata Chowdhury, Kevin Garrity, Francesca Tavazza
Extensive research is currently focused on 2D and 3D magnetic topological insulators (MTIs), as their many novel properties make them excellent candidates for applications in spintronics and quantum computing. Practical MTIs requires a combination of
NIST has developed a user-friendly spreadsheet-based software for the analysis of elastic-plastic fracture toughness tests conducted according to ASTM E1820-20b on either Compact Tension or Single-Edge Bend specimens using the Unloading/Elastic Compliance
Lauren J. Riddiford, Alexander Grutter, Timothy Pillsbury, Max Stanley, Danielle Reifsnyder Hickey, Peng Li, Nasim Alem, Nitin Samarth, Yuri Suzuki
Magnetic insulator and topological insulator heterostructures have been studied in search of induced magnetism in the topological insulator, but chiral edge states have been elusive. We have identified MgAl 0.5Fe 1.5O 4/Bi 2Se 3 bilayers for a possible
Sugata Chowdhury, Albert Rigosi, Heather Hill, David Newell, Angela Hight Walker, Francesca Tavazza, Andrew Briggs
Metallic transition metal dichalcogenides like tantalum diselenide (TaSe2) exhibit exciting behaviors at low temperatures including the emergence of charge density wave (CDW) states. In this work, density functional theory (DFT) is used to classify the
Bubble point pressures of three binary mixtures at two compositions each have been measured utilizing a static method. The mixtures studied were: difluoromethane + 2,3,3,3 tetrafluoroprop-1-ene (R-32/1234yf), difluoromethane + (E)-1,3,3,3-tetrafluoroprop-1
The presence of electrostatic forces and associated artifacts complicates the interpretation of piezoresponse force microscopy (PFM) and electrochemical strain microscopy (ESM). Eliminating these artifacts provides an opportunity for precisely mapping
M. J. Roos, Patrick Quarterman, Jinjun Ding, Mingzhong Wu, Brian Kirby, B. L. Zink
We present evidence for and characterization of a ≈ 4 nm thick (Y1−xGdx)3Fe5O12 layer with x ≥ 0.4 formed at the interface between a gadolinium gallium garnet (GGG) substrate and a sputtered Y3Fe5O12 (YIG) epitaxial film with nominal thickness of 20 nm
Samuel Berweger, Fei Zhang, Bryon Larson, Andrew Ferguson, Axel Palmstrom, Obadiah Reid, Thomas Mitchell (Mitch) Wallis, Kai Zhu, Joseph Berry, Pavel Kabos, Sanjini Nanayakkara
The excellent optoelectronic properties of lead-halide perovskite thin films are complemented by their tolerance to broad compositional variations and associated strain, which allows tuning of desired properties such as the optical bandgap. On the other
Organic materials are uniquely suited for indoor light energy harvesting because they absorb mostly in the visible spectrum and the absence of ultraviolet light minimizes their degradation. However, the performance of photovoltaic devices under indoor