NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Eugenio Onate, Riccardo Rossi, Sergio R. Idelsohn, Kathryn Butler
A new computational procedure for analysis of the melting and flame spread of polymers under fire conditions is presented. The method, termed Particle Finite Element Method (PFEM), combines concepts from particle-based techniques with those of the standard
Roland H. Kraemer, Mauro Zammarano, Gregory T. Linteris, Ulf W. Gedde, Jeffrey W. Gilman
Flexible polyurethane foam used in upholstered furniture remains one of the major fire hazards to date. The heat release rate of burning items made of foam depends strongly on the foam's physical behavior, notably its collapse to a burning liquid that can
Current existing and proposed U.S. flammability standards for soft furnishings such as mattresses and upholstered furniture specify a standard cigarette as the ignition source in smoldering resistance performance tests. With the increasing prevalence of
This paper presents a summary of research performed during a three-year NIST/industry consortium, "Performance Assessment and Optimization of Fire Resistive Materials." Progress in assessing thermophysical properties and adhesion performance of these
Dale P. Bentz, Christopher C. White, Kuldeep R. Prasad, Daniel R. Flynn, Donald L. Hunston, Kar T. Tan
While ASTM E119-07a is commonly employed to establish a fire rating for a fire resistive material (FRM)/steel assembly, the test method provides little quantitative information on either the thermophysical or adhesion properties of the FRM, beyond
This report is part III in an ongoing series concerning the characterization and modeling of the thermal performance of fire resistive materials (FRMs). In part I, a methodology for characterizing FRMs to provide quantitative material property inputs for
A model of the melting and dripping behavior of thermoplastic materials in fire is being developed using the Particle Finite Element Method (PFEM), which is capable of tracking the large changes in shape inherent to this problem in addition to solving the
Kuldeep R. Prasad, Roland Kramer, Nathan D. Marsh, Marc R. Nyden, Thomas J. Ohlemiller, William M. Pitts, Mauro Zammarano
The NIST Fire Dynamics Simulator (FDS) is used extensively by the fire protection engineer for performance based design and forensic analysis. The equations of motion describing the gas phase are relatively well known and the approximations in the various
This paper examines the current state of research into sustainable flame retardants with the work on nanocomposites highlighted. The motivations to move away from halogen-based flame retardants are discussed and a number of life-cycle-assessments are
Stanislav Stoliarov, Sean Crowley, R Lyon, Gregory T. Linteris
This study demonstrates that a numerical pyrolysis model called ThermaKin, which was developed by SRA International, Inc. and the Federal Aviation Administration, can be used to predict and extrapolate the results of gasification and cone calorimetry
It has been known for decades that people die from inhaling fire gases and that visible smoke presents challenges to people trying to escape from fires in homes, transportation vehicles, and commercial buildings. Within the current decade, there has been
Typical prescriptive and performance-based assessments of life safety in building fires do not explicitly consider the contributions of the toxic potency of combustion gases, smoke obscuration, or the thermal and radiative environment. This paper
A fire and the objects involved in the fire form a highly complex dynamic system. Important processes occur over a wide range of spatial and temporal scales, from the microscales of thermodynamics and chemical kinetics, through the mesoscales of heat
The effects of oxidizer stream velocity and oxygen concentration, as well as gravity and pressure, on the extinguishment limits of laminar co-flow diffusion flames of methane, formed in a cup-burner apparatus, have been studied experimentally and
The structure and suppression of laminar methane air co-flow diffusion flames formed on a cup burner have been studied experimentally and numerically using physically acting fire-extinguishing agents (CO2, N2, He, and Ar) in normal earth (1g) and zero
The first tests of super-effective flame inhibitors blended with CO2 have been performed in methane-air co-flow diffusion flames. Although the organometallic agents used are typically one or two orders of magnitude more effective inhibitors than CF3Br when