NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
A Model of Melting and Dripping Thermoplastic Objects in Fire
Published
Author(s)
Kathryn M. Butler
Abstract
A model of the melting and dripping behavior of thermoplastic materials in fire is being developed using the Particle Finite Element Method (PFEM), which is capable of tracking the large changes in shape inherent to this problem in addition to solving the equations of motion and energy. Experiments that approximate two-dimensional flow situations provide a basis for comparison for the model in its early stages of development. Reasonable agreement with experiment has been noted for the quasi-steady flow rate from an upright rectangular object that is heated on one face. The two-dimensional spread rate of the thermoplastic melt that has dripped onto a surface beneath the object has been measured experimentally for both horizontal and slightly tilted catch plates. The model agrees within 10 % to experimental results when further degradation of the melt along the catch plate is taken into account.
Butler, K.
(2009),
A Model of Melting and Dripping Thermoplastic Objects in Fire, Fire and Materials 2009, San Francisco, CA, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=901216
(Accessed October 10, 2025)