NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Mohammad Balapour, Thiha Thway, Rathin Rao, Grace Hsuan, Yaghoob Franam, Newell Moser, Edward Garboczi
In this study, a systematic thermodynamics-based framework was applied to recycle waste low and high-calcium coal combustion Fly Ash (FA) into synthetic lightweight aggregates (LWA) through sintering. The process to successfully manufacture synthetic LWA
Swagata Pahari, Matheus Dorneles de Mello, Mansi Shah, Tyler Josephson, Huong Giang Nguyen, Limin Ren, Roger van Zee, Michael Tsapatsis, J. Ilja Siepmann
Hierarchical zeolites containing both micro- ( 700 g L−1), the SPP material becomes selective for water over ethanol.
Equations of state for three isomeric hexanes, 3-methylpentane, 2,2-dimethylbutane, and 2,3- dimethylbutane, have been developed, which are based on experimental thermodynamic property data from the literature. These equations are explicit in the Helmholtz
Kehui Gao, Eric W. Lemmon, Andreas Koester, Monika Thol, Jiangtao Wu
Helmholtz energy equations of state with independent variables of temperature and density were developed for n-perfluorobutane, n-perfluoropentane, and n-perfluorohexane based on experimental thermodynamic property data from the literature and simulation
Jay H. Hendricks, Zeeshan Ahmed, Daniel Barker, Kevin O. Douglass, Stephen Eckel, James A. Fedchak, Nikolai Klimov, Jacob Edmond Ricker, Julia Scherschligt
The NIST on a Chip (NOAC) program's central idea is the idea that measurement technology can be developed to enable metrology to be performed "outside the National Metrology Institute" by the crea-tion of deployed and often miniaturized standards. These
We investigated using gradient elution moving boundary electrophoresis (GEMBE) and capacitively- coupled contactless conductivity detection (C4D) to assay total protein concentration using the BCA reaction. We chose this format because GEMBE is
Arni Sturluson, Ali Raza, Grant McConachie, Daniel Siderius, Xaioli Fern, Cory Simon
Nanoporous materials (NPMs) selectively adsorb and concentrate gases into their pores and thus could be used to store, capture, and sense many different gases. Modularly synthesized classes of NPMs, such as covalent organic frameworks (COFs), offer a large
Ala Bazyleva, William E. Acree, Jr., Robert D. Chirico, Vladimir Diky, Glenn T. Hefter, Johan Jacquemin, Joe W. Magee, John P. O'Connell, James D. Olson, Ilya Polishuk, Kurt Schmidt, John M. Shaw, J. P. M. Trusler, Ronald D. Weir
This article is the first of three projected IUPAC Technical Reports resulting from IUPAC Project 2011-037-2-100 (Reference Materials for Phase Equilibrium Studies). The goal of that project was to select reference systems with critically evaluated
Ala Bazyleva, Jens Abildskov, Andre Anderko, Olivier Baudouin, Yury Chernyak, Jean-Charles de Hemptinne, Vladimir Diky, Ralf Dohrn, J. R. Elliott, Johan Jacquemin, Jean-Noel Jaubert, Kevin Joback, Ursula Kattner, Georgios Kontogeorgis, Herbert Loria, Paul M. Mathias, John O'Connell, Wolffram Schroer, G. J. Smith, Ana Soto, Shu Wang, Ronald D. Weir
Scientific projects frequently involve measurements of thermophysical, thermochemical, and other related properties of chemical compounds and materials. These measured property data have significant potential value for the scientific community, but
The experimental vapor-liquid equilibrium (VLE) data for the binaries relevant to the catalytic fast pyrolysis of biomass have been collected and analyzed using the NIST-COSMO-SAC and NIST-modified UNIFAC models. The existing inconsistencies in the
Ian Bell, Eric Lemmon, Monika Thol, Roland Span, Robin Beckmueller
New equations of state for the binary mixtures H2 + CH4, H2 + N2, H2 + CO2, and H2 + CO are presented. The results are part of an ongoing research project aiming at an improvement of the GERG-2008 model for the description of hydrogen-rich multicomponent
Security and forensic applications employ test and reference materials to develop, calibrate, and validate analytical instrumentation such as mass spectrometry for the trace detection and chemical analysis of target analytes. An emerging class of target
Molecular sieving may occur when two similarly sized molecules compete for a nanopore. This size-selectivity generally favors the adsorption of molecules with smaller kinetic diameter into the pore while excluding larger ones. In nearly all known examples
TThe separation of carbohydrate diastereomers by an ideal size-exclusion mechanism, i.e., in the absence of enthalpic contributions to the separation, can be considered one of the grand challenges in chromatography: Can a difference in the location of a
Jason Widegren, Tara Lovestead, Megan Harries, Cheryle Beuning, Bridger L. Johnston
Dynamic vapor microextraction (DVME) is a new method that enables rapid vapor pressure measurements on large molecules with state-of-the-art measurement uncertainty for vapor pressures near 1 Pa. Four key features of DVME that allow for the rapid
The reactions between OH radicals and hydrogen halides (HCl, HBr, HI) have been studied between 298 K to 460 K by using a discharge flow – electron paramagnetic resonance technique. The rate constants at room temperature were found to be kHCl(298 K) = (7.9
Mark McLinden, Christopher J. Seeton, Andy Pearson
The high global warming potential (GWP) of current refrigerants in cooling equipment based on the vapor-compression cycle has triggered a major effort to find and implement more environmentally benign alternatives. Here, we review the basics of the vapor
When applied to asymmetric binary mixtures (e.g., methane + pentane or heavier alkanes, hydrogen-containing mixtures), the GERG equation of state (GERG-2004 or GERG-2008) predicts critical curves with physically unreasonable temperature maxima above the
Jacob I. Monroe, Harold Wickes Hatch, Nathan NMN Mahynski, M. Scott Shell, Vincent K. Shen
Thermodynamic extrapolation has previously been used to predict arbitrary structural observables in molecular simulations at temperatures (or relative chemical potentials in open- system mixtures) different from those at which the simulation was performed
Recent interest in isopropanol (2-propanol, C3H¬7OH) combustion stems from its potential as a renewable biofuel. Here, we report shock tube investigations of isopropanol decomposition and reaction with H atoms at (918 to 1212) K and (158 to 484) kPa
A novel, particularly robust method for the calculation of critical curves of fluid mixtures is proposed that makes use of differential equations representing the critical conditions (isochoric thermodynamics formalism). These differential equations are
Alberto Scaccabarozzi, James Basham, Liyang Yu, Paul Westcott, Weimin Zhang, Aram Amassian, Iain McCulloch, Mario Caironi, David J. Gundlach, Natalie Stingelin
Organic electronics technologies have attracted considerable interest over the last decades and have become promising alternatives to conventional, inorganic platforms for specific applications. To fully exploit the touted potential of plastic electronics
There is a renewed interest in the use of the refrigerant CF3I for refrigeration and air conditioning applications, driven by its low global warming potential (equivalent to CO2), and very low (but nonzero) ozone depletion potential. In this paper we will