Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Rapid Vapor-Collection Method for Vapor Pressure Measurements of Low-Volatility Compounds

Published

Author(s)

Jason A. Widegren, Tara Lovestead, Megan Harries, Cheryle Beuning, Bridger L. Johnston

Abstract

Dynamic vapor microextraction (DVME) is a new method that enables rapid vapor pressure measurements on large molecules with state-of-the-art measurement uncertainty for vapor pressures near 1 Pa. Four key features of DVME that allow for the rapid collection of vapor samples under thermodynamic conditions are (1) the use of a miniature vapor-equilibration vessel (the "saturator") to minimize the temperature gradients and internal volume, (2) the use of a capillary vapor trap to minimize the internal volume, (3) the use of helium carrier gas to minimize nonideal mixture behavior, and (4) the direct measurement of pressure inside the saturator to accurately account for overpressure caused by viscous flow. The performance of DVME was validated with vapor pressure measurements of n-eicosane (C20H42) at temperatures from 344 to 374 K. A thorough uncertainty analysis indicated a relative standard uncertainty of 2.03–2.82% for measurements in this temperature range. The measurements were compared to a reference correlation for the vapor pressures of n-alkanes; the deviation of the measurements from the correlation was ≤2.85%. The enthalpy of vaporization of n-eicosane at 359.0 K was calculated to be ΔvapH = 91.27 ± 0.28 kJ/mol compared to ΔvapH(corr) = 91.44 kJ/mol for the reference correlation. Total measurement periods as short as 15 min (3 min of thermal equilibration plus 12 min of carrier gas flow) were shown to be sufficient for high-quality vapor pressure measurements at 364 K.
Citation
Analytical Chemistry
Volume
92
Issue
24

Citation

Widegren, J. , Lovestead, T. , Harries, M. , Beuning, C. and Johnston, B. (2020), Rapid Vapor-Collection Method for Vapor Pressure Measurements of Low-Volatility Compounds, Analytical Chemistry, [online], https://doi.org/10.1021/acs.analchem.0c04131 (Accessed April 18, 2024)
Created November 24, 2020, Updated April 19, 2022