Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Thomas Purdy (Fed)

Tom Purdy is currently a physicist in the Quantum Optics Group, Quantum Measurement Division, PML at NIST. Dr. Purdy is interested in harnessing the quantum effects intrinsic in the mechanical interaction of light with macroscopic mechanical resonators to improve measurement and metrology. Previously, Dr. Purdy has worked on a wide variety of optomechanical systems as a postdoctoral researcher at JILA and in his graduate work at UC Berkeley.

Awards and Honors:

2010 National Research Council Postdoctoral Fellowship

Selected Publications

Observation of Radiation Pressure Shot Noise on a Macroscopic Object, T. P. Purdy, R. W. Peterson, and C. A. Regal. Science 339, 801 (2013)

Strong Optomechanical Squeezing of Light, T. P. Purdy. P.-L. Yu, N. S. Kampel, R. W. Peterson, and C. A. Regal. Phys. Rev. X 3, 031012 (2013)

Bidirectional and efficient conversion between microwave and optical light, R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, and K. W. Lehnert. Nature Physics 10, 321 (2014)


Quantum-based vacuum metrology at NIST

Julia K. Scherschligt, James A. Fedchak, Zeeshan Ahmed, Daniel S. Barker, Kevin O. Douglass, Stephen P. Eckel, Edward T. Hanson, Jay H. Hendricks, Thomas P. Purdy, Jacob E. Ricker, Robinjeet Singh
The measurement science in realizing and disseminating the SI unit for pressure, the pascal (Pa), has been the subject of much interest at NIST. Modern optical

Optomechanical Quantum Correlations at Room Temperature

Thomas P. Purdy, Karen E. Grutter, Kartik A. Srinivasan, Jacob M. Taylor
By shining laser light through a nanomechanical beam, we measure the beam’s thermally driven vibrations and perturb its motion with optical forces at a level

Optomechanical Quantum Correlations

Thomas P. Purdy, Karen E. Grutter, Kartik A. Srinivasan, Nikolai N. Klimov, Zeeshan Ahmed, Jacob M. Taylor
We present methods to measure optical quantum correlations arising from an optomechanical interaction even when large classical noise sources are present. We


A line drawing showing the entire structure, which includes the resonator and supporting substrate.

Reticulated Resonator, Process for Making and Use of Same

NIST Inventors
Raymond Simmonds , Katarina Cicak , Cindy Regal and Thomas Purdy
Patent Description Mechanical resonators are widely used in wireless receivers, bio sensors, and timing and frequency control. Besides industry, in recent years in academia there is also considerable interest for ultrahigh precision sensing and fundamental science. A mechanical resonator with the
Created July 30, 2019, Updated July 11, 2022