Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Kartik Srinivasan

Kartik Srinivasan is a Project Leader in the Photonics and Plasmonics Group in the NIST Physical Measurement Laboratory. He received B.S., M.S., and Ph.D. degrees in Applied Physics from the California Institute of Technology, where his graduate research was supported by a Fannie and John Hertz Foundation Fellowship. Kartik has published over 90 peer-reviewed papers on topics including chip-based cavity quantum electrodynamics, quantum frequency conversion, microcavity lasers, integrated cavity optomechanical sensors and signal transducers, quantum dot single-photon sources, photonic crystal devices, and microresonator frequency combs. He has been awarded the NIST Sigma Xi Young Scientist Award for 2011, the Presidential Early Career Award for Scientists and Engineers (PECASE), and the Department of Commerce Bronze Medal. He is a Fellow of the OSA.

Nanophotonics Laboratory

Selected Programs/Projects

Selected Publications

  • Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices, M. Davanco, J. Liu, L. Sapienza, C.-Z. Chang, J. Cardoso, V.B. Verma, R.P. Mirin, S.W. Nam, L. Liu, and K. Srinivasan, Nature Communications 8:889 (2017)
    NIST Publication Database        Journal Web Site
  • Optomechanical quantum correlations at room temperature, T.P. Purdy, K.E. Grutter, K. Srinivasan, and J. Taylor, Science, 356, 1265-1268 (2017).
    NIST Publication Database        Journal Web Site
  • Stably accessing octave-spanning microresonator frequency combs in the soliton regime, Q. Li, T.C. Briles, D.A. Westly, T.E. Drake, J.R. Stone, B.R. Ilic, S.A. Diddams, S.B. Papp, and K. Srinivasan, Optica, 4(2), 193-203 (2017).
    NIST Publication Database        Journal Web Site
  • Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics, Q. Li, M. Davanço, and K. Srinivasan, Nature Photonics 10, 406–414 (2016).
    NIST Publication Database        Journal Web Site
  • Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits, K. C. Balram, M. I. Davanço, J. D. Song, and K. Srinivasan, Nature Photonics 10, 346–352 (2016).
    NIST Publication Database        Journal Web Site
  • Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission, L. Sapienza, M. Davanço, A. Badolato, and K. Srinivasan, Nature Communications 6: 7833 (2015).
    NIST Publication Database        Journal Web Site
  • Manipulating the color and shape of single photons, M. G. Raymer and K. Srinivasan, Physics Today 65, 32–37 (2012).
    NIST Publication Database        Journal Web Site
  • Two-photon interference using background-free quantum frequency conversion of single photons emitted by an InAs quantum dot, S. Ates, I. Agha, A. Gulinatti, I. Rech, M. T. Rakher, A. Badolato, and K. Srinivasan, Physical Review Letters 109, 147405 (2012).
    NIST Publication Database        Journal Web Site
  • Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion, M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, Nature Photonics 4, 786-791 (2010).
    NIST Publication Database        Journal Web Site
  • Linear and nonlinear optical spectroscopy of a strongly-coupled microdisk-quantum dot system, K. Srinivasan and O. Painter, Nature 450, 862-865 (2007).

 

Publications

Created July 30, 2019