Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Brian Hoskins

Brian Hoskins is a research physicist in the Alternative Computing Group in the Nanoscale Device Characterization Division of the Physical Measurement Laboratory (PML). He received both a B.S. and an M.S. in Materials Science and Engineering from Carnegie Mellon University and a Ph.D. in Materials from the University of California, Santa Barbara. For his doctoral research, he developed and characterized resistive switching devices for use in neuromorphic networks. Brian is working on CMOS integration of resistive switches for the development and characterization of intermediate scale neuromorphic networks.


Selected Publications

  • Optimized stateful material implication logic for three-dimensional data manipulation, G. C. Adam, B. D. Hoskins, M. Prezioso, D.B. Strukov, Nano Research 9, 3914 (2016). [doi]
  • Training and operation of an integrated neuromorphic network based on metal-oxide memristors, M. Prezioso*, F. Merrikh-Bayat*, B.D. Hoskins *, G.C. Adam, K.K. Likharev, and D.B. Strukov, Nature 521, 7550 (2015). [doi] *Equal Contributor
  • Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions, E. Mikheev, B.D Hoskins, D. B. Strukov, and S. Stemmer, Nature Communications 5, 3990 (2014). [doi]


Room-temperature skyrmions in strain-engineered FeGe thin films

Sujan Budhathoki, Arjun Sapkota, Ka M. Law, Smriti Ranjit, Bhuwan Nepal, Brian D. Hoskins, Arashdeep S. Thind, Albina Y. Borisevich, Michelle E. Jamer, Travis J. Anderson, Andrew D. Koehler, Karl D. Hobart, Gregory M. Stephen, Don Heiman, Tim Mewes, Rohan Mishra, James C. Gallagher, Adam J. Hauser
Skyrmion electronics hold great promise for low energy consumption and stable high information density, and stabilization of Skyrmion lattice (SkX) phase at or

Streaming Batch Gradient Tracking for Neural Network Training

Siyuan Huang, Brian D. Hoskins, Matthew W. Daniels, Mark D. Stiles, Gina C. Adam
Faster and more energy efficient hardware accelerators are critical for machine learning on very large datasets. The energy cost of performing vector-matrix

Streaming Batch Eigenupdates for Hardware Neural Networks

Brian D. Hoskins, Matthew W. Daniels, Siyuan Huang, Advait Madhavan, Gina C. Adam, Nikolai B. Zhitenev, Jabez J. McClelland, Mark D. Stiles
Neuromorphic networks based on nanodevices, such as metal oxide memristors, phase change memories, and flash memory cells, have generated considerable interest
Created May 7, 2019, Updated March 2, 2020