Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Nikunjkumar Prajapati (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 10 of 10

Zeeman-resolved Autler-Townes splitting in Rydberg atoms with a tunable RF resonance and a single transition dipole moment

February 21, 2024
Author(s)
Noah Schlossberger, Drew Rotunno, Aly Artusio-Glimpse, Nik Prajapati, Samuel Berweger, Dangka Shylla, Matt Simons, Christopher L. Holloway
Applying a magnetic field as a method for tuning the frequency of Autler-Townes splitting for Rydberg electrometry has recently been demonstrated. In this Letter, we provide a theoretical understanding of Rydberg electromechanically-induced-transparency

Investigating electromagnetically induced transparency spectral lineshape distortion due to non-uniform fields in Rydberg-atom electrometry

August 25, 2023
Author(s)
Drew Rotunno, Samuel Berweger, Nik Prajapati, Aly Artusio-Glimpse, MATTHEW SIMONS, chris holloway, Amy Robinson
We investigate the effects of spatially non-uniform radio-frequency electric (E) field amplitudes on the spectral line shapes of electromagnetically induced transparency (EIT) signals in Rydberg atomic systems used in electrometry (i.e., the metrology of E

Synthetic Aperture RF Reception using Rydberg Atoms

August 2, 2023
Author(s)
Nik Prajapati, Aly Artusio-Glimpse, Matt Simons, Samuel Berweger, Drew Rotunno, Maitreyi Jayaseelan, Kaleb Campbell, Christopher L. Holloway
Rydberg atoms show great promise for use as self-calibrated electric field sensors for a broad range of frequencies. Their response is traceable to the international system of units making them a valuable tool for a variety of applications including

Inverse Transform Sampling for Efficient Doppler-Averaged Spectroscopy Simulations

July 14, 2023
Author(s)
Drew Rotunno, Nik Prajapati, Samuel Berweger, MATTHEW SIMONS, Aly Artusio-Glimpse, Amy Robinson, chris holloway
We present a thermal velocity sampling method for calculating Doppler-broadened atomic spectra, which more efficiently reaches a smooth limit than regular velocity weighted sampling. The method uses equal-population sampling of the 1-D thermal distribution

Rydberg Atoms for One-Step Traceability for Sensing Electric Fields

May 8, 2023
Author(s)
Aly Artusio-Glimpse, Christopher L. Holloway, Matt Simons, Nik Prajapati, Drew Rotunno, Samuel Berweger, Kaleb Campbell, Maitreyi Jayaseelan
Absolute electric field measurements present a "chicken-and-egg" situation where calibration of field probes relies on accurate knowledge of the field while precise determination of the field involves measurements with a calibrated probe. Metrology

Rydberg Engineering: Recent Techniques for Sensitive Field Measurements

February 9, 2023
Author(s)
Drew Rotunno, Nik Prajapati, Samuel Berweger, Aly Artusio-Glimpse, MATTHEW SIMONS, chris holloway, Amy Robinson
Highly-excited Rydberg atoms have been used for International System of Unit (SI)-traceable radio-frequency (RF) electric field and power measurements, but are limited in sensitivity to order 100 $\mu$V/m/$\sqrtHz}$ by noise and linewidth issues. These

Modern RF Measurements with Hot Atoms

April 4, 2022
Author(s)
Aly Artusio-Glimpse, MATTHEW SIMONS, Nik Prajapati, chris holloway
Over a hundred years later, the classic antenna, first invented by Heinrich Hertz, in 1888, [1], is still the dominant technology used for the measurement of RF fields. Just seven years after its invention, Guglielmo Marconi applied the antenna to long

Enhancement of electromagnetically induced transparency based Rydberg-atom electrometry through population repumping

November 22, 2021
Author(s)
chris holloway, Nik Prajapati, MATTHEW SIMONS, Samuel Berweger, Aly Artusio-Glimpse, Amy Robinson
We demonstrate the improvement of Rydberg electrometry based on electromagnetically induced transparency (EIT) through the use of a ground state repumping laser. Though there are many factors that limit the sensitivity of radio frequency field measurements