Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Conan Weiland (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 10 of 10

Lattice vibrations and the energy landscape of the isoelectronic semiconductor series CuBr, ZnSe, GaAs, and Ge: The special case of CuBr and its d-level chemistry

November 9, 2023
Joseph Woicik, Eric J. Cockayne, Eric L. Shirley, Igor Levin, Conan Weiland, Bruce D. Ravel, A. M. Milinda Abeykoon
We have examined the lattice vibrations and the energy landscape of the isoelectronic diamond and zincblende semiconductor series CuBr, ZnSe, GaAs, and Ge. Vibrations are found to be an increasing function of ionicity, with the cation sublattice always

Interface formation and Schottky barrier height for Y, Nb, Au, and Pt on Ge as determined by hard x-ray photoelectron spectroscopy

January 6, 2023
Abdul Rumaiz, Ian Harding, Conan Weiland, Neha Nooman, Thomas Krings, Ethan Hull, Gabriele Giacomini, Wei Chen, Eric J. Cockayne, D. Peter Simmons, Joseph Woicik
Development of a robust, thin, hole-blocking (n+) contact on high purity germanium (HPGe) has been the main challenge in the development of Ge-based radiation sensors. Yttrium has been reported to be a viable hole-blocking contact on HPGe, and detectors

Noble-metal dark-edge fermiology: core-hole memory and the "Zeeman Auger" effect

January 12, 2022
Eric L. Shirley, Joseph Woicik, Conan Weiland, Ahmed Rumaiz, Charles Cardot, Joshua Kas, John Rehr
Gold and platinum have the face-centered-cubic crystal structure, are considered noble metals, and differ by one in atomic number. Near-edge M4,5 x-ray absorption and resonant M4,5N6,7N6,7 Auger spectroscopy reveal "dark" edges and a photon-energy

Core-shell and Egg-shell Zeolite Catalysts for Enhanced Hydrocarbon Processing

January 1, 2022
Thuy Tran Le, Kumari Shilpa, Choongsze Lee, Sungmin Han, Conan Weiland, Simon Bare, Paul Dauenhauer, Jeffrey Rimer
Developing structure-performance relationships with the underlying goal of optimizing known zeolite catalysts involves the manipulation of their physicochemical properties. Here, we systematically assessed the impact of mesoscopic gradients in acid site

Lessons learned from FeSb2O4 on stereoactive lone pairs as a design principle for anion insertion

October 20, 2021
Wasif Zaheer, George Agbeworvi, Saul Perez-Beltran, Justin Andrews, Yierpan Aierken, Conan Weiland, Cherno Jaye, Young-Sang Yu, David Shapiro, Sirine Fakra, Daniel A. Fischer, Jinghua Guo, David Prendergrast, Sarbajit Banerjee
Fluoride-ion batteries are an attractive energy storage concept analogous to lithium-ion batteries but feature an inverted paradigm where anions (fluoride-ion), and not cations, are the principal charge carriers. Insertion hosts that can reversibly insert

Betraying excitonic processes and chemical bonding in MoS2 by x-ray-absorption near-edge structure and resonant-Auger electron emission

March 10, 2021
Joseph Woicik, Nicholas F. Quackenbush, Conan Weiland, Eric L. Shirley, Abdul K. Rumaiz, Michael T. Brumbach, James M. Ablett
Electron core-hole processes at absorption edges sport several signatures, primarily in the form of bound states and/or excitonic enhancement. Through analysis of the resonant-Raman Auger effect for the 2-dimensional transition-metal dichalcogenide MoS2

Charge-transfer satellites in the photoemission and x-ray absorption spectra of SrTiO3 and TiO2: Experiment and first-principles theory

March 10, 2021
Eric L. Shirley, Joseph Woicik, Cherno Jaye, Daniel A. Fischer, Abdul K. Rumaiz, Joshua J. Kas, John J. Rehr, Conan Weiland
Complete ab initio real-time cumulant and Bethe-Salpeter-equation calculations accurately capture the detailed satellite structure observed in both the photoemission and x-ray absorption spectra of the transition-metal compounds SrTiO3 and TiO2. Real-space

Core-hole processes in photoemission and x-ray absorption by resonant-Auger electron spectroscopy and first-principles theory

March 10, 2021
Eric L. Shirley, Joseph Woicik, Conan Weiland, James M. Ablett, Abdul K. Rumaiz, Michael T. Brumbach, Joshua J. Kas, John J. Rehr
The electron-core-hole interaction is critical for proper interpretation of core-level spectroscopies commonly used as structural tools in materials' science. Resonant Auger- electron spectroscopy can uniquely identify exciton, shake, and charge-transfer

Reversible Room-Temperature Fluoride-Ion Insertion in a Tunnel-Structured Transition Metal Oxide Host

July 6, 2020
Cherno Jaye, Wasif Zaheer, Justin L. Andrews, Forrest P. Hyler, Conan Weiland, David A. Shapiro, Jinghua Guo, Jesus M. Velazquez, Sarbajit Banerjee, Abhishek Parija, Daniel A. Fischer
An energy storage paradigm orthogonal to conventional Li-ion battery chemistries can be conceptualized by employing anions as the primary charge carriers. F-ion conversion chemistries show promise but have limited cyclability as a result of the significant