NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Betraying excitonic processes and chemical bonding in MoS2 by x-ray-absorption near-edge structure and resonant-Auger electron emission
Published
Author(s)
Joseph Woicik, Nicholas F. Quackenbush, Conan Weiland, Eric L. Shirley, Abdul K. Rumaiz, Michael T. Brumbach, James M. Ablett
Abstract
Electron core-hole processes at absorption edges sport several signatures, primarily in the form of bound states and/or excitonic enhancement. Through analysis of the resonant-Raman Auger effect for the 2-dimensional transition-metal dichalcogenide MoS2, we demonstrate that these effects can have significant manifestations at the S 1s x-ray edge. We characterize two asymmetric excitonically enhanced edges: one at the fundamental band edge and one several electron volts above it following a second band gap that lies entirely within the unoccupied states, with the latter revealing an anomalous post-collision interaction effect. Our interpretation is supported by comparison of the absorption spectra with electronic structure calculations obtained using an ab initio solution of the Bethe-Salpeter equation, which accurately accounts for the electron-core-hole interaction.
Woicik, J.
, Quackenbush, N.
, Weiland, C.
, , E.
, Rumaiz, A.
, Brumbach, M.
and Ablett, J.
(2021),
Betraying excitonic processes and chemical bonding in MoS2 by x-ray-absorption near-edge structure and resonant-Auger electron emission, Physical Review B, [online], https://dx.doi.org/10.1103/PhysRevB.98.115149, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=926252
(Accessed October 12, 2025)