Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Connor Fredrick (Assoc)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 11 of 11

Thermal-light heterodyne spectroscopy with frequency comb calibration

February 18, 2022
Author(s)
Scott Diddams, Connor Fredrick, Franklyn Quinlan, Ryan Terrien, Suvrath Mahadevan, Freja Olsen
Precision laser spectroscopy is key to many developments in atomic and molecular physics and the advancement of related technologies such as atomic clocks and sensors. However, in important spectroscopic scenarios, such as astronomy and remote sensing, the

High-performance, compact optical standard

September 15, 2021
Author(s)
Zachary Newman, Vincent N. Maurice, Tara Fortier, Connor Fredrick, Scott Diddams, John Kitching, Matthew Hummon
We describe a high-performance, compact optical frequency standard based on a microfabricated Rb vapor cell and a low-noise, external cavity diode laser operating on the Rb two-photon transition at 778 nm. The optical standard achieves an instability of 1

Broadband stability of the Habitable Zone Planet Finder Fabry-Perot etalon calibration system:evidence for chromatic variation

July 8, 2021
Author(s)
Ryan C. Terrien, Joe P. Ninan, Scott Diddams, Suvrath Mahadevan, Samuel Halverson, Chad Bender, Connor Fredrick, Fred Hearty, Jeffrey M. Jennings, Andrew J. Metcalf, Andrew J. Monson, Arpita Roy, Christian Schwab, Gudmundur Stefansson
The comb-like spectrum of a white light-illuminated Fabry-Pérot etalon can serve as a cost-effective and stable reference source for precise Doppler measurements. Understanding the stability of these devices across their broad (100's of nm) spectral

Frequency stability of the mode spectrum of broad bandwidth Fabry-Perot interferometers

April 27, 2020
Author(s)
Jeffrey M. Jennings, Ryan C. Terrien, Connor Fredrick, Michael Grisham, Mark Notcutt, Samuel Halverson, Suvrath Mahadevan, Scott Diddams
When illuminated by a white light source, the discrete resonances of a Fabry- Perot interferometer (FP) provide a broad bandwidth, comb-like spectrum useful for frequency calibration. We report on the design, construction, and laboratory characterization

Architecture for the photonic integration of an optical atomic clock

May 20, 2019
Author(s)
Zachary L. Newman, Vincent N. Maurice, Tara E. Drake, Jordan R. Stone, Travis Briles, Daryl T. Spencer II, Connor D. Fredrick, Qing Li, Daron A. Westly, Bojan R. Ilic, B. Shen, M.-G Suh, K. Y. Yang, C Johnson, D.M. S. Johnson, Leo Hollberg, K. Vahala, Kartik A. Srinivasan, Scott A. Diddams, John E. Kitching, Scott B. Papp, Matthew T. Hummon
Optical atomic clocks, which rely on high-frequency, narrow-line optical transitions to stabilize a clock laser, outperform their microwave counterparts by several orders of magnitude due to their inherently large quality factors. Optical clocks based on

Accurate optical stabilization of a Kerr-microresonator frequency comb

June 14, 2018
Author(s)
Travis Briles, Jordan R. Stone, Tara E. Drake, Daryl T. Spencer, Connor D. Fredrick, Qing Li, Daron A. Westly, Bojan R. Ilic, Kartik A. Srinivasan, Scott A. Diddams, Scott B. Papp
Carrier-envelope-phase stabilization of optical waveforms enables exquisitely precise measurements by way of direct optical-frequency synthesis, coherent optical-to-microwave phase conversion, and control of ultrafast waveforms. We report such phase

An Integrated-Photonics Optical-Frequency Synthesizer

May 3, 2018
Author(s)
Daryl T. Spencer, Tara E. Drake, Travis Briles, Jordan R. Stone, Laura C. Sinclair, Connor D. Fredrick, Qing Li, Daron A. Westly, Bojan R. Ilic, Aaron Bluestone, Nicolas Volet, Tin Komljenovic, Seung Hoon Lee, Dong Yoon Oh, Myoung-Gyun Suh, Ki Youl Yang, Martin H. Pfeiffer, Tobias J. Kippenberg, Erik Norberg, Kerry Vahala, Kartik A. Srinivasan, Nathan R. Newbury, Luke Theogarajan, John E. Bowers, Scott A. Diddams, Scott B. Papp
Integrated-photonics microchips now enable a range of advanced functionalities for high- coherence applications like data transmission, for highly optimized physical sensors, and for harnessing quantum states, but with size, extensibility, and portability

Photonic chip for laser stabilization to an atomic vapor at a precision of $10^{-11}$

April 11, 2018
Author(s)
Matthew T. Hummon, Songbai Kang, Douglas G. Bopp, Qing Li, Daron A. Westly, Sangsik Kim, Connor D. Fredrick, Scott A. Diddams, Kartik A. Srinivasan, John E. Kitching
We perform precision spectroscopy of rubidium confined in a micro-machined, 27~mm$^3$ volume, vapor cell using a collimated free space 120~$\bm{\mu}$m diameter laser beam derived directly from a single mode silicon nitride waveguide. With this optical

Versatile silicon-waveguide supercontinuum for coherent mid-infrared spectroscopy

March 6, 2018
Author(s)
Nima Nader, Daniel Maser, Flavio Caldas da Cruz, Abijith S. Kowligy, Henry R. Timmers, Jeffrey T. Chiles, Connor D. Fredrick, Daron A. Westly, Richard P. Mirin, Jeffrey M. Shainline, Scott A. Diddams
Infrared spectroscopy is a powerful tool for basic and applied science. The rich “spectral fingerprints” of compounds in the 3 um - 20 um region provide a means to uniquely identify the molecular structure for applications that include fundamental

Coherent UV-to-Visible Light Arrays

January 9, 2017
Author(s)
Dong Yoon Oh, Scott Diddams, Ki Youl Yang, Kerry J. Vahala, Connor Fredrick, Gabriel Ycas
Short duration, intense pulses of light can experience dramatic spectral broadening when propagating through lengths of optical fiber. This continuum generation process is caused by a combination of nonlinear optical effects including the formation of so