Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Yiliang Bao (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 10 of 10

Low-power, agile electro-optic frequency comb spectrometer for integrated sensors

March 11, 2024
Kyunghun Han, David Long, Sean Bresler, Junyeob Song, Yiliang Bao, Benjamin Reschovsky, Kartik Srinivasan, Jason J. Gorman, Vladimir Aksyuk, Thomas W. LeBrun
Sensing platforms based upon photonic integrated circuits have shown considerable promise; however, they require corresponding advancements in integrated optical readout technologies. Here, we present an on-chip spectrometer that leverages an integrated

Single-modulator, direct frequency comb spectroscopy via serrodyne modulation

February 3, 2023
David Long, Sean Bresler, Yiliang Bao, Benjamin Reschovsky, Thomas W. LeBrun, Jason J. Gorman
Traditional electro-optic frequency comb spectrometers rely upon the use of an acousto-optic modulator (AOM) to provide a differential frequency shift between probe and local oscillator (LO) legs of the interferometer. Here we show that these modulators

Intrinsically accurate sensing with an optomechanical accelerometer

May 18, 2022
Benjamin Reschovsky, David Long, Feng Zhou, Yiliang Bao, Richard A. Allen, Jason J. Gorman, Thomas W. LeBrun
We demonstrate a microfabricated optomechanical accelerometer that is capable of percent-level accuracy without external calibration. To achieve this capability, we use a mechanical model of the device behavior that can be characterized by the thermal

Broadband thermomechanically limited sensing with an optomechanical accelerometer

March 9, 2021
Feng Zhou, Yiliang Bao, Ramgopal Madugani, David Long, Jason J. Gorman, Thomas W. LeBrun
Cavity optomechanics has enabled precision measurements with unprecedented levels of sensitivity, including the detection of attonewton forces, nanoparticles, magnetic fields, and gravitational waves. In most cases, detection is performed in a narrow

Electro-optic frequency combs for rapid interrogation in cavity optomechanics

January 29, 2021
David Long, Benjamin J. Reschovsky, Feng Zhou, Yiliang Bao, Thomas W. LeBrun, Jason Gorman
Electro-optic frequency combs were employed to rapidly interrogate an optomechanical sensor, demonstrating spectral resolution substantially exceeding that possible with a mode-locked frequency comb. Frequency combs were generated using an integrated

A Photonic MEMS Accelerometer with a Low-Finesse Hemispherical Microcavity Readout

August 13, 2017
Yiliang Bao, Feng Zhou, Thomas W. LeBrun, Jason J. Gorman
This paper describes the design, fabrication, and testing of a photonic MEMS accelerometer that uses a hemispherical microcavity to transduce the motion of the proof mass. The cavity design provides stable operation that is relatively tolerant of

Concave silicon micromirrors for stable hemispherical optical microcavities

June 23, 2017
Yiliang Bao, Feng Zhou, Thomas W. LeBrun, Jason J. Gorman
A detailed study of the fabrication of silicon concave micromirrors for hemispherical microcavities is presented that includes fabrication yield, surface quality, surface roughness, cavity depth, radius of curvature, and the aspect ratio between the cavity

An Optomechanical Accelerometer with a High-Finesse Hemispherical Optical Cavity

February 22, 2016
Yiliang Bao, Felipe Guzman, Arvind Balijepalli, John Lawall, Jacob Taylor, Thomas W. LeBrun, Jason J. Gorman
A new design for an optomechanical accelerometer is presented. The design includes a hemispherical optical cavity that can achieve high finesse and a proof mass that is well-constrained by silicon nitride beams. Based on previous work and analysis, the

MEMS optomechanical accelerometry standards

July 8, 2015
Felipe Guzman, Yiliang Bao, Jason J. Gorman, John R. Lawall, Jacob M. Taylor, Thomas W. LeBrun
Current acceleration primary standards reach relative uncertainties of the order of 0.001 and consist of complex test facilities, typically operated at National Metrology Institutes. Our research focuses on the development of silicon mechanical oscillator