NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Concave silicon micromirrors for stable hemispherical optical microcavities
Published
Author(s)
Yiliang Bao, Feng Zhou, Thomas W. LeBrun, Jason J. Gorman
Abstract
A detailed study of the fabrication of silicon concave micromirrors for hemispherical microcavities is presented that includes fabrication yield, surface quality, surface roughness, cavity depth, radius of curvature, and the aspect ratio between the cavity depth and radius of curvature. Most importantly, it is shown that much larger cavity depths are possible than previously reported while achieving desirable aspect ratios and nanometer-level roughness. This should result in greater frequency stability and improved insensitivity to fabrication variations for the mode matching optics. Spectral results for an assembled hemispherical microcavity are presented, demonstrating that high finesse and quality factor are achieved with these micromirrors, F = 1524 and Q = 3.78 x 105, respectively.
Bao, Y.
, Zhou, F.
, LeBrun, T.
and Gorman, J.
(2017),
Concave silicon micromirrors for stable hemispherical optical microcavities, Optics Express, [online], https://doi.org/10.1364/OE.25.015493
(Accessed October 11, 2025)