Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Thomas Gerrits (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 76 - 100 of 117

Photon-number uncertainty in a superconducting transition-edge sensor beyond resolved-photon-number determination

September 10, 2014
Author(s)
Zachary H. Levine, Boris L. Glebov, Alan L. Migdall, Thomas Gerrits, Brice R. Calkins, Adriana E. Lita, Sae Woo Nam
As part of an effort to extend fundamental single-photon measurements into the macroscopic regime, we explore how best to assign photon-number uncertainties to output waveforms of a superconducting Transition Edge Sensor (TES) and how those assignments

Photon-Efficient High-Dimensional Quantum Key Distribution

June 12, 2014
Author(s)
Tian Zhong, Hongchao Zhou, Ligong Wang, Gregory Wornell, Zheshen Zhang, Jeffrey Shapiro, Franco N. Wong, Rob Horansky, Varun Verma, Adriana Lita, Richard Mirin, Thomas Gerrits, Sae Woo Nam, Alessandro Restelli, Joshua Bienfang, Francesco Marsili, Matthew Shaw
We demonstrate two high-dimensional QKD protocols - secure against collective Gaussian attacks - yielding up to 8.6 secure bits per photon and 6.7 Mb/s throughput, with 6.9 bits per photon after transmission through 20 km of fiber.

Detection-Loophole-Free Test of Quantum Nonlocality, and Applications

September 26, 2013
Author(s)
B. G. Christensen, Kevin McCusker, Joseph Altepeter, Brice R. Calkins, Thomas Gerrits, Adriana Lita, Aaron J. Miller, Krister Shalm, Sae Woo Nam, P. G. Kwiat
We present a source of entangled photons that violates a Bell inequality free of the "fair-sampling" assumption, by over 50 standard deviations, and with enough "efficiency" overhead to eventually perform a fully loophole-free test of local realism. The

High quantum-efficiency photon-number-resolving detector for photonic on-chip information processing

September 18, 2013
Author(s)
Brice R. Calkins, Paolo L. Mennea, Adriana E. Lita, Benjamin Metcalf, Steven Kolthammer, Antia A. Lamas-Linares, Justin Spring, Peter C. Humphreys, Richard P. Mirin, James Gates, Peter Smith, Ian Walmsley, Thomas Gerrits, Sae Woo Nam
The integrated optical circuit is a promising architecture for the realization of complex quantum optical states and information networks. One element that is required for many of these applications is a high-efficiency photon detector capable of photon

Photon-Number-Resolved Detection of Photon-Subtracted Thermal Light

June 18, 2013
Author(s)
Jingyun Fan, Yanhua (. Zhai, Francisco E. Becerra Chavez, Boris L. Glebov, Adriana E. Lita, Brice R. Calkins, Thomas Gerrits, Sae Woo Nam, Alan L. Migdall
We examine the photon statistics of photon-subtracted thermal light using photonnumberresolving detection. We show the photon-number distribution transforms from a Bose-Einstein distribution to a Poisson distribution as the number of photons subtracted

Nanosecond-scale timing jitter in transition edge sensors at telecom and visible wavelengths

June 10, 2013
Author(s)
Antia A. Lamas-Linares, Brice R. Calkins, Nathan A. Tomlin, Thomas Gerrits, Adriana Lita, Joern Beyer, Richard Mirin, Sae Woo Nam
Transition edge sensors (TES) have the highest reported efficiencies (> 98%) for single photon detection in the visible and near infrared. Experiments in quantum information and foundations of physics that rely on this efficiency have started incorporating

Bell violation using entangled photons without the fair-sampling assumption

April 14, 2013
Author(s)
Marissa Giustina, Alexandra Mech, Sven Ramelow, Bernhard Wittman, Johannes Keffler, Joern Beyer, Adriana Lita, Thomas Gerrits, Sae Woo Nam, Rupert Ursin, Anton Zeilinger, Brice R. Calkins
The violation of a Bell inequality is an experimental observation that forces the abandonment of a local realistic viewpoint - namely, one in which physical properties are (probabilistically) defined before and independently of measurement, and in which no

Highly efficient heralding of entangled single photons

March 11, 2013
Author(s)
Sven Ramelow, Alexandra Mech, Marissa Giustina, Simon Groeblacher, Witlef Wieczorek, Adriana Lita, Brice R. Calkins, Thomas Gerrits, Sae Woo Nam, Anton Zeilinger, Rupert Ursin
Single photons are an important prerequisite for a broad spectrum of quantum optical applications. We experimentally demonstrate a heralded single-photon source based on spontaneous parametric down- conversion in collinear bulk optics, and fiber-coupled

Detecting Single Infrared Photons with 93 % System Efficiency

February 25, 2013
Author(s)
Francesco F. Marsili, Varun B. Verma, Jeffrey A. Stern, Sean D. Harrington, Adriana E. Lita, Thomas Gerrits, Igor Vayshenker, Burm Baek, Matthew D. Shaw, Richard P. Mirin, Sae Woo Nam
Single-photon detectors (SPDs) are nonlinear transducers that respond to the absorption of one or more photons with an electrical signal1. SPDs at near infrared wavelengths with high system detection efficiency (> 90%), low dark count rate (

Joint Spectral Measurements at the Hong-Ou-Mandel Interference Dip

January 29, 2013
Author(s)
Thomas Gerrits, Francesco F. Marsili, Varun B. Verma, Adriana E. Lita, Antia A. Lamas-Linares, Jeffrey A. Stern, Matthew Shaw, William Farr, Richard P. Mirin, Sae Woo Nam
We employed a 2 channel single-photon detection system with high detection efficiency and low jitter to characterize the joint spectral distribution (JSD) of the correlated photons emerging from a Hong-Ou-Mandel interference arrangement. We show the JSDs

Extending single-photon optimized superconducting transition edge sensors beyond the single-photon counting regime

October 2, 2012
Author(s)
Thomas Gerrits, Brice R. Calkins, Nathan A. Tomlin, Adriana E. Lita, Alan L. Migdall, Sae Woo Nam, Richard P. Mirin
Photon number resolving transition-edge sensors (TES) are the cutting-edge enabling technology for high quantum efficiency photon counting when the number of photons of an input state needs to be determined. The TES developed at NIST reliably show system

Extending single-photon optimized superconducting transition edge sensors beyond the single-photon counting regime

October 2, 2012
Author(s)
Thomas Gerrits, Brice R. Calkins, Nathan A. Tomlin, Adriana E. Lita, Alan L. Migdall, Richard P. Mirin, Sae Woo Nam
Typically, transition edge sensors resolve photon number of up to 10 or 20 photons, depending on the wavelength and TES design. We extend that dynamic range up to 1000 photons, while maintaining sub- shot noise detection process uncertainty of the number

On-chip, photon-number-resolving, telecom-band detectors for scalable photonic information processing

July 30, 2012
Author(s)
Thomas Gerrits, Nick Thomas-Peter, James Gates, Adriana E. Lita, Benjamin Metcalf, Brice R. Calkins, Nathan A. Tomlin, Anna E. Fox, Antia A. Lamas-Linares, Justin Spring, Nathan Langford, Richard P. Mirin, Peter Smith, Ian Walmsley, Sae Woo Nam
We demonstrate the operation of an integrated photon number resolving transition edge sensor (TES), operating in the telecom band at 1550 nm, employing an evanescently coupled design that allows the detector to be placed at arbitrary locations within a

Transition edge sensors with low jitter and fast recovery times

July 30, 2012
Author(s)
Antia A. Lamas-Linares, Nathan A. Tomlin, Brice R. Calkins, Adriana E. Lita, Thomas Gerrits, Joern Beyer, Richard P. Mirin, Sae Woo Nam
Superconducting transition edge sensors (TES) for single photon detection have been shown to have almost perfect quantum efficiency (98%) at a wide range of wavelengths. Their high quantum efficiency combined with their ability to intrisically measure the

An algorithm for finding clusters with a known distribution and its application to photon-number resolution using a superconducting transition-edge sensor

July 20, 2012
Author(s)
Zachary H. Levine, Thomas Gerrits, Alan L. Migdall, Daniel V. Samarov, Brice R. Calkins, Adriana E. Lita, Sae Woo Nam
Improving photon-number resolution of single-photon sensitive detectors is important for many applications, as is extending the range of such detectors. Here we seek improved resolution for a particular Superconducting Transition-Edge Sensor (TES) through

Extending single-photon optimized superconducting transition edge sensors beyond the single-photon counting regime

May 6, 2012
Author(s)
Thomas Gerrits, Brice R. Calkins, Nathan A. Tomlin, Adriana E. Lita, Alan L. Migdall, Richard P. Mirin, Sae Woo Nam
We illuminate a photon-number-resolving transition edge sensor with strong pulses of light containing up to 6.7 million photons (0.85 pJ per pulse). These bright pulses heat the sensor far beyond its transition edge into the normal resistance regime. We

On-chip, photon-number-resolving, telecom-band detectors for scalable photonic information processing

May 6, 2012
Author(s)
Thomas Gerrits, Nick Thomas-Peter, James Gates, Adriana E. Lita, Benjamin Metcalf, Brice R. Calkins, Nathan A. Tomlin, Anna E. Fox, Antia A. Lamas-Linares, Justin Spring, Nathan Langford, Richard P. Mirin, Peter Smith, Ian Walmsley, Sae Woo Nam
We demonstrate an integrated photon-number resolving detector, operating in the telecom band at 1550 nm, employing an evanescently coupled design that allows the detector to be placed at arbitrary locations within a planar optical circuit. Up to 5 photons

Conclusive quantum steering with superconducting transition-edge sensors

January 10, 2012
Author(s)
Devin H. Smith, Marcelo de Almeida, Gillett Geoff, Branciard Cyril, Allesandro Fedrizzi, Weinhold J. Till, Adriana Lita, Brice R. Calkins, Thomas Gerrits, Wiseman H, Sae Woo Nam, Andrew G. White
Quantum steering allows two parties to verify shared entanglement even if one measurement device is untrusted. A conclusive demonstration of steering through the violation of a steering inequality is of considerable fundamental interest and opens up

On-chip, photon-number-resolving, telecommunication-band detectors for scalable photonic information processing

December 5, 2011
Author(s)
Thomas Gerrits, Nick Thomas-Peter, James Gates, Adriana E. Lita, Benjamin Metcalf, Brice R. Calkins, Nathan A. Tomlin, Anna E. Fox, Antia A. Lamas-Linares, Justin Spring, Nathan Langford, Richard P. Mirin, Peter Smith, Ian Walmsley, Sae Woo Nam
Integration is currently the only feasible route towards scalable photonic quantum processing devices which are sufficiently complex to be genuinely useful in computing, metrology, and simulation. Embedded on-chip detection will be critical to such devices

Generation and characterization of high-purity, pulsed squeezed light at telecom wavelengths from pp-KTP

November 15, 2011
Author(s)
Thomas Gerrits, Martin J. Stevens, Burm Baek, Brice R. Calkins, Adriana E. Lita, Scott C. Glancy, Emanuel H. Knill, Sae Woo Nam, Richard P. Mirin, Robert Hadfield, Ryan Bennink, Warren Grice, Sander N. Dorenbos, Tony Zijlstra, Teun Klapwijk, Val Zwiller
We characterize a pp-KTP crystal designed to produce pure single mode squeezed vacuum at 1570 nm. Measurements show a raw (corrected) Hong-Ou-Mandel interference with 86 % (90 %) visibility and a circular joint spectral probability distribution with a

Extending single-photon optimized superconducting transition edge sensors beyond the single-photon counting regime

September 19, 2011
Author(s)
Thomas Gerrits, Brice R. Calkins, Nathan A. Tomlin, Adriana E. Lita, Alan L. Migdall, Sae Woo Nam, Richard P. Mirin
Photon number resolving transition-edge sensors (TES) are the cutting-edge enabling technology for high quantum efficiency photon number counting. The TES developed at NIST reliably show system detection efficiencies of more than 95%, and even approach 99%

Characterization of high-purity, pulsed squeezed light at telecom wavelengths from pp-KTP for quantum information applications

May 1, 2011
Author(s)
Thomas Gerrits, Burm Baek, Martin J. Stevens, Brice R. Calkins, Adriana E. Lita, Scott C. Glancy, Emanuel H. Knill, Sae Woo Nam, Richard P. Mirin, Robert Hadfield, Ryan Bennink, Warren Grice, Sander N. Dorenbos, Tony Zijlstra, Teun Klapwijk, Val Zwiller
We characterize a pp-KTP crystal designed to produce pure single mode squeezed vacuum at 1570 nm. Measurements show Hong-Ou-Mandel interference with 97% visibility and a circular joint spectral distribution with a Schmidt number of 1.08.

Characterization of high-purity, pulsed squeezed light at telecom wavelengths from pp-KTP for quantum information applications

December 1, 2010
Author(s)
Thomas Gerrits, Burm Baek, Martin J. Stevens, Brice R. Calkins, Adriana E. Lita, Scott C. Glancy, Emanuel H. Knill, Sae Woo Nam, Richard P. Mirin, Robert Hadfield, Ryan Bennink, Warren Grice, Sander N. Dorenbos, Tony Zijlstra, Teun Klapwijk, Val Zwiller
Pure optical squeezing in a single mode is highly desirable for quantum information applications such as continuous variable quantum computing and the generation of optical Schrödinger cat states. To generate optical cat states, photons are subtracted from