Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Kevin J. Coakley (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 25 of 91

Emission Ghost Imaging: reconstruction with data augmentation

February 1, 2024
Author(s)
Kevin J. Coakley, Heather H. Chen-Mayer, Bruce D. Ravel, Daniel Josell, Nikolai Klimov, Sarah Robinson, Daniel S. Hussey
Ghost Imaging enables 2D reconstruction of an object even though particles transmitted or emitted by the object of interest are detected with a single pixel detector without spatial resolution. This is possible because the incident beam is spatially

Magnetic Resonance Imaging Biomarker Calibration Service: NMR Measurement of Isotropic Water Diffusion Coefficient

March 30, 2023
Author(s)
Stephen E. Russek, Katy Keenan, Karl Stupic, Nikki Rentz, Michael Boss, Kevin J. Coakley, Amanda Koepke, Cassandra Stoffer
This document describes a calibration service to measure the water diffusion coefficient, or diffusivity, in reference materials and tissue mimics using nuclear magnetic resonance (NMR) techniques. This calibration is restricted to materials which exhibit

Mixture model analysis of Transition Edge Sensor pulse height spectra

December 9, 2021
Author(s)
Kevin J. Coakley, Jolene D. Splett, Thomas Gerrits
To calibrate an optical transition edge sensor, for each pulse of the light source (e.g., pulsed laser), one must determine the ratio of the expected number of photons that deposit energy and the expected number of photons created by the laser. Based on

Measurement of mass of aerosol particles

January 1, 2021
Author(s)
Kevin J. Coakley, Robert Hagwood, Kensei Ehara, Nobuhiko FUKUSHIMA, Kittichote WORACHOTEKAMJORN, Naoko TAJIMA, Hiromu SAKURAI
An aerosol particle mass analyzer (APM) which classifies aerosol particles according to their mass has been developed. Mass distributions of aerosol particles can be measured by the APM combined with a particle counting device. Particle mass that can be

Microwave radiometer instability due to infrequent calibration

April 16, 2020
Author(s)
Kevin J. Coakley, Jolene D. Splett, Dave K. Walker, Mustafa Aksoy, Paul E. Racette
We directly quantify the effect of infrequent calibration on the stability of microwave radiometer temperature measurements (where a power measurement for the unknown source is acquired at a fixed time but calibration data are acquired at variable earlier

Measurement of mass of aerosol particles

October 30, 2019
Author(s)
Kevin J. Coakley, Robert C. Hagwood, Kensei Ehara, Nobuhiko Fukushima, Kittichote Worachotekamjorn, Naoko Tajima, Hiromu Sakurai
An aerosol particle mass analyzer (APM) which classifies aerosol particles according to their mass has been developed. Mass distributions of aerosol particles can be measured by the APM combined with a particle counting device. Particle mass that can be

The NIST Johnson noise thermometry system for the determination of the Boltzmann constant

December 29, 2017
Author(s)
Nathan Flowers-Jacobs, Alessio Pollarolo, Kevin Coakley, Adam C. Weis, Anna Fox, Horst Rogalla, Weston L. Tew, Samuel Benz
In preparation for the redefinition of the International System of Units (SI), five different electronic measurements of the Boltzmann constant have been performed using different Johnson noise thermometry (JNT) systems over the past seven years. In this

A Boltzmann Constant Determination Based on Johnson Noise Thermometry

August 10, 2017
Author(s)
Nathan E. Flowers-Jacobs, Alessio Pollarolo, Kevin J. Coakley, Anna E. Fox, Horst Rogalla, Weston L. Tew, Samuel P. Benz
A value for the Boltzmann constant was measured electronically using an improved version of the Johnson Noise Thermometry (JNT) system at the National Institute of Standards and Technology (NIST), USA. This system is different from prior ones, including

An improved electronic measurement of the Boltzmann constant by Johnson noise thermometry

July 18, 2017
Author(s)
Jifeng Qu, Samuel Benz, Kevin Coakley, Horst Rogalla, Weston L. Tew, David R. White, Kunli Zhou, Zhenyu Zhou
Recent measurements using acoustic gas thermometry have determined the value of the Boltzmann constant, k, with a relative uncertainty less than 110-6. These results have been supported by a measurement with a relative uncertainty of 1.910-6 made with

Precision measurement of the radiative beta decay of the free neutron

June 30, 2017
Author(s)
Christopher D. Bass, Maynard S. Dewey, Thomas R. Gentile, Hans Pieter Mumm, Alan Keith Thompson, M J. Bales, R. Alarcon, E J. Beise, H Breuer, Jim Byrne, T E. Chupp, Kevin Coakley, R L. Cooper, B. O'Neill, F E. Wietfeldt
The theory of quantum electrodynamics predicts that a continuous spectrum of photons is emitted in the beta decay of the free neutron in addition to a proton, an electron, and an antineutrino. We report the first precision test of the shape of the photon

Preparation of entangled states through Hilbert space engineering

September 28, 2016
Author(s)
Yiheng Lin, John P. Gaebler, Florentin Reiter, Ting R. Tan, Ryan S. Bowler, Yong Wan, Adam C. Keith, Emanuel Knill, Kevin Coakley, Dietrich Leibfried, David J. Wineland, Scott Glancy
Entangled states are a crucial resource for quantum-based technologies such as quantum computers and quantum communication systems. Exploring new methods for entanglement generation is important for diversifying and eventually improving current approaches

High Fidelity Universal Gate Set for 9Be+ Ion Qubits

August 4, 2016
Author(s)
John P. Gaebler, Ting R. Tan, Yong Wan, Yiheng Lin, Ryan S. Bowler, Adam C. Keith, Scott Glancy, Kevin Coakley, Emanuel Knill, Dietrich Leibfried, David J. Wineland
We report high-fidelity laser-beam-induced quantum logic gates on qubits comprised of hyperfine states in 9Be+ ions, achieved in part through a combination of improved laser beam quality and control and improved state preparation. We demonstrate single

Improved spectra aberration in the Johnson Noise Thermometry

July 9, 2016
Author(s)
Alessio Pollarolo, Horst Rogalla, Anna Fox, Kevin J. Coakley, Weston L. Tew, Samuel P. Benz
SPECTRAL ABERRATION HAS BEEN FOR A LONG TIME THE MAIN SOURCE OF UNCERTAINTY IN THE JOHNSON NOISE THERMOMETRY APPROACH TO MEASURING THE BOLTZMANN CONSTANT. RECENTLY, WITH NEWLY DEVELOPED HARDWARE AND THE INTRODUCTION OF A NOVEL FITTING ALGORITHM FOR

Surrogate Gas Prediction Model as a Proxy for {D}14C-Based Measurements of Fossil Fuel-CO2

June 27, 2016
Author(s)
Kevin J. Coakley, Benjamin Miller, Stephen A. Montzka, Colm Sweeney, Ben Miller, John B. Miller
In contrast to CO2 produced in the atmosphere by all other sources, CO2 produced by the combustion of fossil fuels is devoid of 14C. Thus, the measured 14C: 12C isotopic ratio of atmospheric CO2 (and its associated derived {Δ}14C value) is an ideal tracer

Precision measurement of the radiative beta decay of the free neutron

June 14, 2016
Author(s)
Jeffrey S. Nico, Kevin J. Coakley, Maynard S. Dewey, Thomas R. Gentile, Hans P. Mumm, Alan Keith Thompson, M J. Bales, R. Alarcon, C. D. Bass, E J. Beise, H Breuer, Jim Byrne, R L. Cooper, B. O'Neill, F E. Wietfeldt, T E. Chupp
The theory of quantum electrodynamics predicts that a continuous spectrum of photons is emitted in the beta decay of the free neutron in addition to a proton, an electron, and an antineutrino. We report the first precision test of the shape of the photon

Near-field control and imaging of free charge carrier variations in GaN nanowires

February 15, 2016
Author(s)
Samuel Berweger, Paul T. Blanchard, Matthew Brubaker, Kevin J. Coakley, Norman A. Sanford, Thomas Mitchell (Mitch) Wallis, Kris A. Bertness, Pavel Kabos
Despite their uniform crystallinity, the shape and faceting of semiconducting nanowires (NWs) can give rise to variations in structure and associated electronic properties. Here we investigate local variations in electronic structure across individual n

Survival analysis approach to account for non-exponential decay rate effects in lifetime experiments

January 13, 2016
Author(s)
Kevin J. Coakley, Maynard S. Dewey, Michael G. Huber, Hans P. Mumm, Alan Keith Thompson, Andrew T. Yue, C. R. Huffer, P. R. Huffman, C. M. O'Shaughnessy, K. W. Schelhammer, D. E. Marley
In experiments that measure the lifetime of trapped particles, in addition to loss mechanisms with exponential survival probability functions, particles can be lost by mechanisms with non-exponential survival probability functions. Failure to account for