Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: David J. Wineland (Assoc)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 176 - 200 of 482

A Microfabricated Surface-Electrode Ion Trap for Scalable Quantum Information Processing

June 30, 2006
Author(s)
Signe Seidelin, J Chiaverini, Rainer Reichle, John J. Bollinger, Dietrich G. Leibfried, Joseph W. Britton, Janus Wesenberg, Brad R. Blakestad, John D. Jost, David Hume, C. Langer, R Ozeri, Nobuyasu Shiga, David J. Wineland
We demonstrate confinement of individual atomic ions in an RF Paul trap with novel geometry where the electrodes are located in a single plane and the ions confined above this plane. This device is realized with a simple fabrication procedure and has

Spectroscopy of atomic and molecular ions using quantum logic

June 25, 2006
Author(s)
Piet Schmidt, Till P. Rosenband, Jeroen Koelemeij, David Hume, Wayne M. Itano, James C. Bergquist, David J. Wineland
Recently developed techniques for quantum computation using trapped ions allow unprecedented coherent control of the internal and external states of single atoms. Here we report how these techniques can be employed to perform precision spectroscopy of

Recent experiments in trapped-ion quantum information processing at NIST

May 1, 2006
Author(s)
J Chiaverini, Matthew P. Barrett, Brad R. Blakestad, Joseph W. Britton, Wayne M. Itano, John D. Jost, Emanuel H. Knill, C. Langer, Dietrich G. Leibfried, R Ozeri, T Schaetz, David J. Wineland
Atomic ions confined in segmented trap arrays provide a system for quantum information processing. We report on the execution of two simple quantum algorithms, quantum error correction and the quantum Fourier transform, using this implementation. The

Recent experiments in trapped-ion quantum information processing at NIST

May 1, 2006
Author(s)
J Chiaverini, Murray D. Barrett, Brad R. Blakestad, Joseph W. Britton, Wayne M. Itano, John D. Jost, Emanuel H. Knill, C. Langer, Dietrich G. Leibfried, R Ozeri, Tobias Schaetz, David J. Wineland
Atomic ions confined in segmented trap arrays provide a system for quantum information processing. We report on the execution of two simple quantum algorithms, quantum error correction and the quantum Fourier transform, using this implementation. The

Blackbody radiation shift of the 27 Al + 1 S 0 - 3 P 0 transition

March 27, 2006
Author(s)
Till P. Rosenband, Wayne M. Itano, Piet Schmidt, David Hume, Jeroen Koelemeij, James C. Bergquist, David J. Wineland
The differential polarizability, due to near-infrared light at 1126 nm, of the 27Al + 1S 0 – 3P 0 transition is measured to be {Δ}α = (1.6 ± x 10 -31 m 3, where {Δ}α = α P - α S is the difference between the excited and ground state polarizabilities. This

Trapped Atomic Ions and Quantum Information Processing

January 1, 2006
Author(s)
David J. Wineland, Dietrich G. Leibfried, James C. Bergquist, R B. Blakestad, John J. Bollinger, Joseph W. Britton, J Chiaverini, Ryan Epstein, David Hume, Wayne M. Itano, John D. Jost, E Knill, Jeroen Koelemeij, Christopher Langer, R Ozeri, Rainer Reichle, Till P. Rosenband, T Schaetz, Piet Schmidt, Signe Seidelin, Nobuyasu Shiga, Janus Wesenberg

Creation of a six-atom Schrodinger cat state

December 1, 2005
Author(s)
Dietrich G. Leibfried, Emanuel H. Knill, Signe Seidelin, Joseph W. Britton, Brad R. Blakestad, J Chiaverini, David Hume, Wayne M. Itano, John D. Jost, C. Langer, R Ozeri, Rainer Reichle, David J. Wineland
Among highly entangled states of multiple quantum systems, Schrödinger cat states are particularly useful. Cat states are equal superpositions of two maximally different quantum states. They are a fundamental resource in fault-tolerant quantum computing

Enhanced Quantum State Detection Efficiency Through Quantum Information Processing

October 1, 2005
Author(s)
T Schaetz, M D. Barrett, D. Leibfried, J. Britton, J. Chiaverini, W M. Itano, J. D. Jost, Emanuel Knill, C. Langer, David J. Wineland
The n-qubit concurrence canonical decomposition (CCD) is a generalization of the two-qubit canonical decomposition SU(4)=[SU(2) (x) SU(2)] ? [SU(2) (x) SU(2)], where ? is the commutative group which phases the maximally entangled Bell basis. A prequel