Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: David J. Wineland (Assoc)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 51 - 75 of 242

Relativity and Optical Clocks

September 24, 2010
Author(s)
Chin-Wen Chou, David Hume, Till P. Rosenband, David J. Wineland
Albert Einstein's theory of relativity forced us to alter our concepts of reality. One of the more startling outcomes of the theory is that we have to give up our notions of simultaneity. This is manifest in the so-called twin paradox in which a twin

Efficient fiber optic detection of trapped ion flourescence

July 9, 2010
Author(s)
Aaron Vandevender, Yves Colombe, Jason Amini, Dietrich G. Leibfried, David J. Wineland
Integration of fiber optics may play a critical role in the development of quantum information processors based on trapped ions, atoms, and quantum dots. Fibers could help enable a scalable and efficient means of collecting light from and delivering light

Toward scalable ion traps for quantum information processing

March 16, 2010
Author(s)
Jason Amini, Hermann Uys, Janus H. Wesenberg, Signe Seidelin, Joseph W. Britton, John J. Bollinger, Dietrich G. Leibfried, Christian Ospelkaus, Aaron Vandevender, David J. Wineland
The basic components for a quantum information processor using trapped ions have been demonstrated in a number of experiments. To perform complex algorithms that are not tractable with classical computers, these components need to be integrated and scaled

Frequency Comparison of Two High-Accuracy Al+ Optical Clocks

February 17, 2010
Author(s)
Chin-Wen Chou, David Hume, J.C. Koelemeij, David J. Wineland, Till P. Rosenband
We have constructed an optical clock with a fractional frequency inaccuracy of 8.6e-18, based on quantum logic spectroscopy of an Al+ ion. A simultaneously trapped Mg+ ion serves to sympathetically laser-cool the Al+ ion and detect its quantum state. The

Quantum information processing and quantum control with trapped atomic ions

December 14, 2009
Author(s)
David J. Wineland
The role of trapped atomic ions in the field of quantum information processing is briefly reviewed. We discuss some of the historical developments that enabled ions to enter the field and then summarize the basic mechanisms required for logic gates and the

Realization of a programmable two-qubit quantum processor

November 15, 2009
Author(s)
David Hanneke, Jonathan Home, John D. Jost, Jason Amini, Dietrich G. Leibfried, David J. Wineland
The universal quantum computer is a device that could simulate any physical system and represents a major goal for the field of quantum information science. Algorithms performed on such a device are predicted to offer significant gains for some important

Preparation of Dicke States in an Ion Chain

November 2, 2009
Author(s)
David Hume, Chin-Wen Chou, Till P. Rosenband, David J. Wineland
We have investigated theoretically and experimentally a method for preparing Dicke states in trapped atomic ions. We consider a linear chain of N ion qubits that is prepared in a particular Fock state of motion, jmi. The m phonons are removed by applying a

Scalable arrays of doped silicon RF Paul traps

October 26, 2009
Author(s)
Joseph W. Britton, Dietrich G. Leibfried, James A. Beall, Brad R. Blakestad, Janus H. Wesenberg, David J. Wineland
We report techniques for the fabrication of multi-zone linear RF Paul traps which exploit the machinability and electrical conductivity of bulk doped silicon. The approach was verified by trapping and Doppler cooling 24Mg+ ions in two trap geometries: a

Complete Methods Set for Scalable Ion Trap Quanum Information Processing

September 4, 2009
Author(s)
Jonathan Home, David Hanneke, John D. Jost, Jason Amini, Dietrich G. Leibfried, David J. Wineland
Building a quantum information processor capable of outperforming classical devices will require many quantum bits (qubits) and very large numbers of logical operations \cite{05Knill}. A key requirement is the faithful transport of qubits throughout the

Stylus ion trap for enhanced access and sensing

August 1, 2009
Author(s)
Robert Maiwald, Gerd Leuchs, Dietrich Leibfried, Joseph W. Britton, James C. Bergquist, David J. Wineland
We experimentally characterized a novel radio-frequency (rf) ion trap geometry formed by two concentric cylinders over a ground plane. These traps allow for optical and physical access over more than 2 pi solid angle reaching 91% and 96% of 4 respectively

Frequency Measurements of Al+ and Hg+ Optical Standards

June 8, 2009
Author(s)
Wayne M. Itano, James C. Bergquist, Till P. Rosenband, David J. Wineland, David Hume, Chin-wen Chou, Steven R. Jefferts, Thomas P. Heavner, Tom Parker, Scott Diddams, Tara Fortier
Frequency standards based on narrow optical transitions in 27Al+ and 199Hg+ ions have been developed at NIST. Both standards have absolute reproducibilities of a few parts in 10 17. This is about an order of magnitude better than the fractional uncertainty

Entangled Mechanical Oscillators

June 4, 2009
Author(s)
John D. Jost, Jonathan Home, Jason Amini, David Hanneke, R. Ozeri, Christopher Langer, John J. Bollinger, Dietrich G. Leibfried, David J. Wineland
Quantum mechanics describes the state and evolution of isolated systems, where entangled and superposition states can be created. Its application to large systems led Schr dinger to posit his famous cat, which exists in a superposition of alive and dead

Optimized Dynamical Decoupling in a Model Quantum Memory

April 23, 2009
Author(s)
Michael J. Biercuk, Hermann Uys, Aaron Vandevender, N. Shiga, Wayne M. Itano, David J. Wineland, John J. Bollinger
We demonstrate the efficacy of optimized dynamical decoupling pulse sequences in suppressing phase errors in a model quantum memory. Our experimental system consists of a crystalline array of trapped 9Be + ions in which we drive a qubit transition at $\sim

High Fidelity Transport of Trapped-Ion Qubits through an X-Junction Trap Array

April 17, 2009
Author(s)
Brad R. Blakestad, Aaron Vandevender, Christian Ospelkaus, Jason Amini, Joseph W. Britton, Dietrich G. Leibfried, David J. Wineland
Trapped ions are a useful system for studying the elements of quantum information processing. Simple alogrithms have been demonstrated, but scaling to much larter tasks requires the ability to manipulate many qubits. To achieve this, ions could be

Quantum Teleportation with Atomic Qubits

October 16, 2008
Author(s)
J Chiaverini, T Schaetz, Joseph W. Britton, Wayne M. Itano, John D. Jost, Emanuel Knill, C. Langer, Dietrich Leibfried, R Ozeri, David J. Wineland

Alpha-Dot or Not: Comparison of Two Single Atom Optical Clocks

October 5, 2008
Author(s)
Till P. Rosenband, David Hume, Chin-Wen Chou, J.C. Koelemeij, A. Brusch, Sarah Bickman, Windell Oskay, Tara M. Fortier, Jason Stalnaker, Scott A. Diddams, Nathan R. Newbury, William C. Swann, Wayne M. Itano, David J. Wineland, James C. Bergquist
Repeated measurements of the frequency ratio of Hg + and Al + single-atom optical clocks over the course of a year yield a constraint on the possible temporal variation of the fine-structure constant a. The time variation of the measured ratio corresponds

Recent atomic clock comparisions at NIST

October 1, 2008
Author(s)
Luca Lorini, Neil Ashby, Anders Brusch, Scott Diddams, Robert E. Drullinger, Eric Eason, Tara Fortier, Pat Hastings, Thomas P. Heavner, David Hume, Wayne M. Itano, Steven R. Jefferts, Nathan R. Newbury, Tom Parker, Till P. Rosenband, Jason Stalnaker, William C. Swann, David J. Wineland, James C. Bergquist
The record of atomic clock frequency comparisons at NIST over the past half-decade provides one of the tightest constraints of any present-day, temporal variations of the fundamental constants. Notably, the 6-year record of increasingly precise

Trapped-Ion Quantum Logic Gates Based on Oscillating Magnetic Fields

August 29, 2008
Author(s)
Christian Ospelkaus, Christopher Langer, Jason Amini, Kenton R. Brown, Dietrich G. Leibfried, David J. Wineland
Oscillating magnetic fields and field gradients can be used to implement single-qubit rotations and entangling multi-qubit quantum gates for trapped-ion quantum information processing (QIP). With fields generated by currents in microfabricated surface

Ratio of the Al + and Hg + Optical Clock Frequencies to 17 Decimal Places

August 25, 2008
Author(s)
Wayne M. Itano, Till P. Rosenband, David Hume, P.O. Schmidt, Chin-Wen Chou, A. Brusch, Luca Lorini, Windell Oskay, Robert E. Drullinger, Sarah Bickman, Tara M. Fortier, Jason Stalnaker, Scott A. Diddams, William C. Swann, Nathan R. Newbury, David J. Wineland, James C. Bergquist
Frequency standards (atomic clocks) based on narrow optical transitions in 27Al + and 199Hg + have been developed over the past several years at NIST. These two types of standards are both based on single ions confined in Paul traps, but differ in the

Quantum Computing With Ions

August 1, 2008
Author(s)
David J. Wineland, C Monroe
This article briefly describes methods to generate entanglement and implement quantum information processing with the use of trapped ions. It is intended to give a simple introduction to the techniques involved, the status of the field and indicate future

Entangled states of trapped atomic ions

June 19, 2008
Author(s)
Rainer Blatt, David J. Wineland
This article reviews recent experiments on entanglement and quantum information processing that use trapped ions.  It is intended to give a brief summary of the status of the field and indicate future directions and challenges.

Frequency ratio of Al + and Hg + single-ion optical clocks; metrology at the 17th decimal place

March 6, 2008
Author(s)
Till P. Rosenband, David Hume, P. O. Schmidt, Chin-Wen Chou, Anders Brusch, Luca Lorini, Windell Oskay, Robert E. Drullinger, Tara M. Fortier, Jason Stalnaker, Scott A. Diddams, Nathan R. Newbury, W Swann, Wayne M. Itano, David J. Wineland, James C. Bergquist
We report the frequency ratio of the two most accurate and stable atomic clocks with a total fractional uncertainty of 5.2 X 10 -17 . This frequency ratio is the best-known physical constant that is not a simple integer. Repeated measurements during the

Fluorescence during Doppler cooling of a single trapped atom

November 26, 2007
Author(s)
Janus Wesenberg, Dietrich G. Leibfried, Brad R. Blakestad, Joseph W. Britton, Ryan Epstein, Jonathan Home, Wayne M. Itano, John D. Jost, Emanuel H. Knill, C. Langer, R. Ozeri, Signe Seidelin, David J. Wineland
We investigate the temporal dynamics of Doppler cooling of a single trapped atom in the weak binding regime using a semi-classical model. We develop an analytical model for the simplest case of a single vibrational mode for a harmonic trap, and show how

Passive Cooling of a Micromechanical Oscillator with a Resonant Electric Circuit

September 28, 2007
Author(s)
Kenton R. Brown, Joseph W. Britton, Ryan Epstein, John Chiaverini, Dietrich G. Leibfried, David J. Wineland
Currently there is considerable interest in the cooling of macroscopic mechanical oscillators, as strong cooling may allow one to reach the quantum regime of such oscillators. Recent advances in microfabrication and cooling techniques have brought this