NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Optimized Dynamical Decoupling in a Model Quantum Memory
Published
Author(s)
Michael J. Biercuk, Hermann Uys, Aaron Vandevender, N. Shiga, Wayne M. Itano, David J. Wineland, John J. Bollinger
Abstract
We demonstrate the efficacy of optimized dynamical decoupling pulse sequences in suppressing phase errors in a model quantum memory. Our experimental system consists of a crystalline array of trapped 9Be+ ions in which we drive a qubit transition at $\sim$124 GHz. We compare the recently developed Uhrig dynamical decoupling (UDD) sequence against multi-pulse spin echo (CPMG) in a variety of experimentally relevant, artificially synthesized noise environments. We develop a treatment to predict qubit decoherence in the presence of finite duration square pi pulses, and find strong agreement between experimental data and theoretical predictions. Finally, we produce locally optimized dynamical decoupling pulse sequences through active experimental feedback - a procedure which does not require any knowledge of the experimental noise environment - and find that these sequences outperform all others under test.
Biercuk, M.
, Uys, H.
, Vandevender, A.
, Shiga, N.
, Itano, W.
, Wineland, D.
and Bollinger, J.
(2009),
Optimized Dynamical Decoupling in a Model Quantum Memory, Science, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=901161
(Accessed October 9, 2025)