Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Publications

Search Publications by David J. Wineland

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 25 of 239

High-fidelity laser-free universal control of trapped ion qubits

September 8, 2021
Author(s)
Raghavendra Srinivas, Emanuel Knill, Robert Sutherland, Alexander T. Kwiatkowski, Hannah M. Knaack, Scott Glancy, David J. Wineland, Shaun C. Burd, Dietrich Leibfried, Andrew C. Wilson, David T. Allcock, Daniel Slichter
Universal control of multiple qubits—the ability to entangle qubits and to perform arbitrary individual qubit operations—is a fundamental resource for quantum computing, simulation and networking. Qubits realized in trapped atomic ions have shown the

State Readout of a Trapped Ion Qubit Using a Trap-integrated Superconducting Photon Detector

January 6, 2021
Author(s)
Susanna L. Todaro, Varun Verma, Katherine C. McCormick, David T. Allcock, Richard Mirin, David J. Wineland, Sae Woo Nam, Andrew C. Wilson, Dietrich Leibfried, Daniel Slichter
We detect fluorescence photons emitted by a single $^9$Be$^+$ ion confined in a surface- electrode rf ion trap, using a superconducting nanowire single photon detector integrated directly into the trap. We achieve a qubit readout fidelity of 99.91(1) %

Laser-free trapped-ion entangling gates with simultaneous insensitivity to qubit and motional decoherence

April 29, 2020
Author(s)
R. T. Sutherland, Raghavendra Srinivas, Shaun C. Burd, Hannah M. Knaack, Andrew C. Wilson, David J. Wineland, Dietrich Leibfried, David T. Allcock, Daniel Slichter, S. B. Libby
The dominant error sources for state-of-the-art implementations of laser-free trapped-ion entangling gates are decoherence of the qubit state and motion. The gate error from these decoherence mechanisms can be suppressed with additional control fields, or

Quantum Logic Spectroscopy with Ions in Thermal Motion

April 16, 2020
Author(s)
Daniel Kienzler, Yong Wan, Stephen Erickson, Jenny Wu, Andrew C. Wilson, David J. Wineland, Dietrich Leibfried
A mixed-species geometric phase gate has been proposed for implementing quantum logic spectroscopy on trapped ions, which combines probe and information transfer from the spectroscopy to the logic ion in a single pulse. We experimentally realize this

Quantum-enhanced sensing of a mechanical oscillator

July 22, 2019
Author(s)
Katherine C. McCormick, Jonas Keller, Shaun C. Burd, David J. Wineland, Andrew C. Wilson, Dietrich Leibfried
The use of special quantum states in interferometry with bosons to achieve sensitivities below the limits established by classical-like coherent dates back decades and has enjoyed immense success since its inception. Squeezed states, number states, and cat

An 27 Al+ quantum-logic clock with systematic uncertainty below 10 -18

July 15, 2019
Author(s)
Samuel M. Brewer, Jwo-Sy Chen, Aaron M. Hankin, Ethan Clements, Chin-wen Chou, David J. Wineland, David Hume, David Leibrandt
We describe an optical atomic clock based on quantum-logic spectroscopy of the 1S0 3P0 transition in 27Al+ with a systematic uncertainty of 9.0 x 10-19 and a frequency stability of 1.2 X 10-15/(T1/2). A 25Mg+ ion is simultaneously trapped with the 27Al+

Measurements of 25 Mg + and 27 Al + magnetic constants for improved ion clock accuracy

July 15, 2019
Author(s)
Samuel M. Brewer, Jwo-Sy Chen, Aaron M. Hankin, Ethan Clements, Chin-wen Chou, Kyle Beloy, Will McGrew, Xiaogang Zhang, Robert J. Fasano, Daniele Nicolodi, Holly Leopardi, Tara Fortier, Scott Diddams, Andrew Ludlow, David J. Wineland, David Leibrandt, David Hume
We have measured the quadratic Zeeman coefficient for the 3P0 excited electronic state in 27Al+, C2=-71.944(24) MHz/T2 and the hyperfine constant of the 25Mg+ 2S1/2 ground electronic state, Ahfs = -596 254 250.981(45) Hz, with improved uncertainties. Both

Quantum amplification of motion of a mechanical oscillator

June 21, 2019
Author(s)
Shaun C. Burd, Raghavendra Srinivas, John J. Bollinger, Andrew C. Wilson, David J. Wineland, Dietrich G. Leibfried, Daniel H. Slichter, David T. Allcock
Detection of the weakest forces in nature and the search for new physics demand increasingly sensitive measurements of the motion of mechanical oscillators. However, the attainable knowledge of an oscillator’s motion is limited by quantum fluctuations that

Coherently displaced oscillator quantum states of a single trapped atom

June 11, 2019
Author(s)
Katherine C. McCormick, Jonas Keller, David J. Wineland, Andrew C. Wilson, Dietrich Leibfried
Coherently displaced harmonic oscillator number states of a harmonically bound ion can be coupled to two internal states of the ion by a laser-induced motional sideband interaction. The internal states can subsequently be read out in a projective

Quantum gate teleportation between separated zones of a trapped-ion processor

May 31, 2019
Author(s)
Yong Wan, Daniel Kienzler, Stephen D. Erickson, Karl H. Mayer, Ting R. Tan, Jenny J. Wu, Hilma H. Macedo De Vasconcelos, Scott C. Glancy, Emanuel H. Knill, David J. Wineland, Andrew C. Wilson, Dietrich G. Leibfried
Large-scale quantum computers will inevitably require quantum gate operations between widely separated qubits, even within a single quantum information processing device. Nearly two decades ago, Gottesman and Chuang proposed a method for implementing such

Trapped-ion spin-motion coupling with microwaves and a near-motional oscillating magnetic field gradient

April 26, 2019
Author(s)
Raghavendra Srinivas, Shaun C. Burd, R. T. Sutherland, Andrew C. Wilson, David J. Wineland, Dietrich G. Leibfried, David T. Allcock, Daniel H. Slichter
We present a new method of spin-motion coupling for trapped ions using microwaves and a magnetic field gradient oscillating close to the ions' motional frequency. We demonstrate and characterize this coupling experimentally using a single ion in a surface

Versatile laser-free trapped-ion entangling gates

March 28, 2019
Author(s)
R. T. Sutherland, Raghavendra Srinivas, Shaun C. Burd, Dietrich Leibfried, Andrew C. Wilson, David J. Wineland, David T. Allcock, Daniel Slichter, S. B. Libby
We present a general theory for laser-free entangling gates with trapped-ion hyperfine qubits, using either static or oscillating magnetic-field gradients combined with a pair of uniform microwave fields symmetrically detuned about the qubit frequency. By

UV-sensitive superconducting nanowire single photon detectors for integration in an ion trap

April 17, 2017
Author(s)
Daniel H. Slichter, Varun B. Verma, Dietrich G. Leibfried, Richard P. Mirin, Sae Woo Nam, David J. Wineland
We demonstrate superconducting nanowire single photon detectors with 76 +/- 4% system detection efficiency at a wavelength of 315 nm and an operating temperature of 3.2 K, with a background count rate below 1 count per second at saturated detection

Chained Bell inequality experiment with high-efficiency measurements

March 28, 2017
Author(s)
Ting Rei Tan, Stephen D. Erickson, Peter L. Bierhorst, Daniel Kienzler, Scott C. Glancy, Emanuel H. Knill, Dietrich G. Leibfried, David J. Wineland, Yong Wan
We report correlation measurements on two 9Be+ ions that violate a chained Bell inequality obeyed by any local-realistic theory. The correlations can be modeled as derived from a mixture of a local-realistic probabilistic distribution and a distribution

Sympathetic Ground State Cooling and Time-dilation Shifts in an 27Al+ Optical Clock

February 3, 2017
Author(s)
Jwo-Sy Chen, Samuel M. Brewer, David B. Hume, Chin-Wen Chou, David J. Wineland, David R. Leibrandt
We report Raman sideband cooling of 25Mg+ to sympathetically cool the secular modes of motion in a 25Mg+-27Al+ two-ion pair to near the three-dimensional (3D) ground state. The evolution of the Fock state distributions during the cooling process is studied

Trapped-ion optical atomic clocks at the quantum limits

January 31, 2017
Author(s)
David R. Leibrandt, Samuel M. Brewer, Jwo-Sy Chen, Aaron M. Hankin, David B. Hume, David J. Wineland, Chin-Wen Chou
Frequency and its inverse, time, are the most accurately measured quantities. Historically, improvements in the accuracy of clocks have enabled advances in navigation, communication, and science. Since 1967, the definition of the SI second has been based

Measurements of trapped-ion heating rates with exchangeable surfaces in close proximity

January 15, 2017
Author(s)
Dustin A. Hite, Kyle S. McKay, Shlomi Salman Kotler, Dietrich G. Leibfried, David J. Wineland, David P. Pappas
Electric-field noise from the surfaces of ion-trap electrodes couples to the ion’s charge causing heating of the ion’s motional modes. This heating limits the fidelity of quantum gates implemented in quantum information processing experiments. The exact

VECSEL systems for generation and manipulation of trapped magnesium ions

November 8, 2016
Author(s)
Shaun C. Burd, David T. Allcock, Tomi Leinonen, Jussi-Pekka Penttinen, Daniel H. Slichter, Raghavendra Srinivas, Andrew C. Wilson, Robert Jordens, Micrea Guina, Dietrich G. Leibfried, David J. Wineland
Experiments in atomic, molecular, and optical (AMO) physics rely on lasers at many different wave- lengths and with varying requirements on spectral linewidth, power and intensity stability. Vertical external-cavity surface-emitting lasers (VECSELs), when

Preparation of entangled states through Hilbert space engineering

September 28, 2016
Author(s)
Yiheng Lin, John P. Gaebler, Florentin Reiter, Ting R. Tan, Ryan S. Bowler, Yong Wan, Adam C. Keith, Emanuel Knill, Kevin Coakley, Dietrich Leibfried, David J. Wineland, Scott Glancy
Entangled states are a crucial resource for quantum-based technologies such as quantum computers and quantum communication systems. Exploring new methods for entanglement generation is important for diversifying and eventually improving current approaches

High Fidelity Universal Gate Set for 9Be+ Ion Qubits

August 4, 2016
Author(s)
John P. Gaebler, Ting R. Tan, Yong Wan, Yiheng Lin, Ryan S. Bowler, Adam C. Keith, Scott Glancy, Kevin Coakley, Emanuel Knill, Dietrich Leibfried, David J. Wineland
We report high-fidelity laser-beam-induced quantum logic gates on qubits comprised of hyperfine states in 9Be+ ions, achieved in part through a combination of improved laser beam quality and control and improved state preparation. We demonstrate single

Multi-element logic gates for trapped-ion qubits

December 17, 2015
Author(s)
Ting Rei Tan, John P. Gaebler, Yiheng Lin, Yong Wan, Ryan S. Bowler, Dietrich G. Leibfried, David J. Wineland
Precision control over hybrid physical systems at the quantum level is of general importance in physics. For trapped-ions, a hybrid system formed of different species introduces extra degrees of freedom that can be exploited to expand and refine the

Early observations of macroscopic quantum jumps in single atoms

March 25, 2015
Author(s)
Wayne M. Itano, James C. Bergquist, David J. Wineland
The observation of intermittent fluorescence of a single atomic ion, a phenomenon better known as 'macroscopic quantum jumps,' was an important early scientific application of the three-dimensional rf quadrupole (Paul) trap. The prediction of the

Optically pumped semiconductor lasers for atomic and molecular physics

February 7, 2015
Author(s)
Dietrich G. Leibfried, Shaun Burd, Andrew C. Wilson, David J. Wineland
Experiments in atomic, molecular and optical (AMO) physics rely on lasers at many different wavelengths and with varying requirements on spectral linewidth, power and intensity stability. Optically pumped semiconductor lasers (OPSLs), when combined with