Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by:

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 25 of 110

Early observations of macroscopic quantum jumps in single atoms

March 25, 2015
Author(s)
Wayne M. Itano, James C. Bergquist, David J. Wineland
The observation of intermittent fluorescence of a single atomic ion, a phenomenon better known as 'macroscopic quantum jumps,' was an important early scientific application of the three-dimensional rf quadrupole (Paul) trap. The prediction of the

Cavity-stabilized laser with acceleration sensitivity below 10 -12 /g -1

February 21, 2013
Author(s)
David R. Leibrandt, James C. Bergquist, Till P. Rosenband
We characterize the frequency-sensitivity of a cavity-stabilized laser to inertial forces and temperature fluctuations, and perform real-time feed-forward to correct for these sources of noise. We measure the sensitivity of the cavity to linear

Generation of Ultrastable microwaves via optical frequency division

June 26, 2011
Author(s)
Tara Fortier, Matthew S. Kirchner, Jennifer A. Taylor, James C. Bergquist, Yanyi Jiang, Andrew Ludlow, Christopher W. Oates, Till P. Rosenband, Scott Diddams, Franklyn Quinlan, Nathan D. Lemke
A frequency-stabilized femtosecond laser optical frequency comb serves as a source of microwave signals having very low close-to-carrier phase noise. Comparison of two independent systems shows combined absolute phase noise of -100 dBc/Hz at an offset of 1

Field-test of a robust, portable, frequency-stable laser

May 10, 2011
Author(s)
David R. Leibrandt, Michael J. Thorpe, James C. Bergquist, Till P. Rosenband
We operate a frequency-stable laser in a non-laboratory environment where the test platform is a passenger vehicle. We measure the acceleration experienced by the laser and actively correct for it to achieve a system acceleration sensitivity of df/f = 11(2

Spherical Reference Cavities for Ultra-Stable Lasers in Non-Laboratory Environments

February 14, 2011
Author(s)
David R. Leibrandt, Michael J. Thorpe, Mark Notcutt, Robert E. Drullinger, Till P. Rosenband, James C. Bergquist
We present an ultra-stable optical cavity design that is insensitive to both vibrations and orientation. The design is based on a spherical cavity spacer which is held rigidly at two points on a diameter of the sphere. Coupling of the support forces to the

Stylus ion trap for enhanced access and sensing

August 1, 2009
Author(s)
Robert Maiwald, Gerd Leuchs, Dietrich Leibfried, Joseph W. Britton, James C. Bergquist, David J. Wineland
We experimentally characterized a novel radio-frequency (rf) ion trap geometry formed by two concentric cylinders over a ground plane. These traps allow for optical and physical access over more than 2 pi solid angle reaching 91% and 96% of 4 respectively

Frequency Measurements of Al+ and Hg+ Optical Standards

June 8, 2009
Author(s)
Wayne M. Itano, James C. Bergquist, Till P. Rosenband, David J. Wineland, David Hume, Chin-wen Chou, Steven R. Jefferts, Thomas P. Heavner, Tom Parker, Scott Diddams, Tara Fortier
Frequency standards based on narrow optical transitions in 27Al+ and 199Hg+ ions have been developed at NIST. Both standards have absolute reproducibilities of a few parts in 10 17. This is about an order of magnitude better than the fractional uncertainty

Yb Optical Lattice Clock

November 23, 2008
Author(s)
Nathan D. Lemke, Andrew Ludlow, Zeb Barber, N Poli, C.W. Hoyt, Long-Sheng Ma, Jason Stalnaker, Christopher W. Oates, Leo Hollberg, James C. Bergquist, A. Brusch, Tara Fortier, Scott Diddams, Thomas P. Heavner, Steven R. Jefferts, Tom Parker
We describe the development and latest results of an optical lattice clock based on neutral Yb atoms, including investigations based on both even and odd isotopes. We report a fractional frequency uncertainty below 10 -15 for 171Yb.

Alpha-Dot or Not: Comparison of Two Single Atom Optical Clocks

October 5, 2008
Author(s)
Till P. Rosenband, David Hume, Chin-Wen Chou, J.C. Koelemeij, A. Brusch, Sarah Bickman, Windell Oskay, Tara M. Fortier, Jason Stalnaker, Scott A. Diddams, Nathan R. Newbury, William C. Swann, Wayne M. Itano, David J. Wineland, James C. Bergquist
Repeated measurements of the frequency ratio of Hg + and Al + single-atom optical clocks over the course of a year yield a constraint on the possible temporal variation of the fine-structure constant a. The time variation of the measured ratio corresponds

Recent atomic clock comparisions at NIST

October 1, 2008
Author(s)
Luca Lorini, Neil Ashby, Anders Brusch, Scott Diddams, Robert E. Drullinger, Eric Eason, Tara Fortier, Pat Hastings, Thomas P. Heavner, David Hume, Wayne M. Itano, Steven R. Jefferts, Nathan R. Newbury, Tom Parker, Till P. Rosenband, Jason Stalnaker, William C. Swann, David J. Wineland, James C. Bergquist
The record of atomic clock frequency comparisons at NIST over the past half-decade provides one of the tightest constraints of any present-day, temporal variations of the fundamental constants. Notably, the 6-year record of increasingly precise

Ratio of the Al + and Hg + Optical Clock Frequencies to 17 Decimal Places

August 25, 2008
Author(s)
Wayne M. Itano, Till P. Rosenband, David Hume, P.O. Schmidt, Chin-Wen Chou, A. Brusch, Luca Lorini, Windell Oskay, Robert E. Drullinger, Sarah Bickman, Tara M. Fortier, Jason Stalnaker, Scott A. Diddams, William C. Swann, Nathan R. Newbury, David J. Wineland, James C. Bergquist
Frequency standards (atomic clocks) based on narrow optical transitions in 27Al + and 199Hg + have been developed over the past several years at NIST. These two types of standards are both based on single ions confined in Paul traps, but differ in the

Frequency evaluation of the doubly forbidden 1 S 0 - 3 P 0 transition in bosonic 174 Yb

May 6, 2008
Author(s)
Nicola Poli, Zeb Barber, Nathan D. Lemke, Christopher W. Oates, Tara Fortier, Scott Diddams, Leo W. Hollberg, James C. Bergquist, Anders Brusch, Steven R. Jefferts, Thomas P. Heavner, Tom Parker
We report an uncertainty evaluation of an optical lattice clock based on the 1S 0 – 3P 0 transition in the bosonic isotope 174Yb using magnetically induced spectroscopy. The uncertainty due to systematic effects has been reduced to less than 0.8Hz, which

Frequency ratio of Al + and Hg + single-ion optical clocks; metrology at the 17th decimal place

March 6, 2008
Author(s)
Till P. Rosenband, David Hume, P. O. Schmidt, Chin-Wen Chou, Anders Brusch, Luca Lorini, Windell Oskay, Robert E. Drullinger, Tara M. Fortier, Jason Stalnaker, Scott A. Diddams, Nathan R. Newbury, W Swann, Wayne M. Itano, David J. Wineland, James C. Bergquist
We report the frequency ratio of the two most accurate and stable atomic clocks with a total fractional uncertainty of 5.2 X 10 -17 . This frequency ratio is the best-known physical constant that is not a simple integer. Repeated measurements during the

Optical-to-microwave frequency comparison with fractional uncertainty of 10 -15

October 1, 2007
Author(s)
Jason Stalnaker, Scott A. Diddams, Tara M. Fortier, K Kim, Leo W. Hollberg, James C. Bergquist, Wayne M. Itano, Marie Delaney, Luca Lorini, Windell Oskay, Thomas P. Heavner, Steven R. Jefferts, Filippo Levi, Thomas E. Parker, Jon H. Shirley
We report the technical aspects of the optical-to-microwave comparison for our recent measurements of the optical frequency of the mercury single-ion frequency standard in terms of the SI second as realized by the NIST-F1 cesium fountain clock. Over the

Optical frequency standards based on mercury and aluminum ions

September 12, 2007
Author(s)
Wayne M. Itano, James C. Bergquist, Anders Brusch, Scott A. Diddams, Tara M. Fortier, Thomas P. Heavner, Leo W. Hollberg, David Hume, Steven R. Jefferts, Luca Lorini, Thomas E. Parker, Till P. Rosenband, Jason Stalnaker
Single-trapped-ion frequency standards based on a 282 nm transition in 199Hg+ and on a 267 nm transition in 27Al+ have been developed at NIST over the past several years. Their frequencies are measured relative to each other and to the NIST primary

Frequency Comparison of Al + and Hg + Optical Standards

June 24, 2007
Author(s)
Till P. Rosenband, David Hume, Anders Brusch, Luca Lorini, P. O. Schmidt, Tara M. Fortier, Jason Stalnaker, Scott A. Diddams, Nathan R. Newbury, W Swann, Windell Oskay, Wayne M. Itano, David J. Wineland, James C. Bergquist
We compare the frequencies of two single ion frequency standards: 27Al + and 199Hg +. Systematic fractional frequency uncertainties of both standards are below 10 -16, and the statistical measurement uncertainty is below 5 x 10 -17. Recent ratio

Observation of the 1 S 0 - 3 P 0 clock transition in 27 Al +

June 1, 2007
Author(s)
Till P. Rosenband, P. O. Schmidt, David Hume, Wayne M. Itano, Tara M. Fortier, Jason Stalnaker, Scott A. Diddams, Jeroen Koelemeij, James C. Bergquist, David J. Wineland
We report for the first time, laser spectroscopy of the 1S 0 – 3P 0 clock transition in 27Al +. A single aluminum ion and a single beryllium ion are simultaneously confined in a linear Paul trap, coupled by their mutual Coulomb repulsion. This coupling

Improved Limits on Variation of the Fine Structure Constant and Violation of Local Position Invariance

May 29, 2007
Author(s)
Tara M. Fortier, Neil Ashby, James C. Bergquist, Marie Delaney, Scott A. Diddams, Thomas P. Heavner, Leo W. Hollberg, Wayne M. Itano, Steven R. Jefferts, K Kim, Windell Oskay, Thomas E. Parker, Jon H. Shirley, Jason Stalnaker, Filippo Levi, Luca Lorini
We report tests of Local Position Invariance (LPI) and constancy of fundamental constants from measurements of the frequency ratio of the 282-nm 199Hg + optical clock transition to the ground-state hyperfine splitting in 133Cs. Analysis of the frequency

Absolute frequency measurement of the neutral 40 Ca optical frequency standard at 657 nm based on microkelvin atoms

March 14, 2007
Author(s)
G Wilpers, Christopher W. Oates, Scott A. Diddams, A Bartels, Tara M. Fortier, Windell Oskay, James C. Bergquist, Steven R. Jefferts, Thomas P. Heavner, Thomas E. Parker, Leo W. Hollberg
We report an absolute frequency measurement of the optical clock transition at 657 nm in 40Ca with a relative uncertainty of 7.5x10 -15, the most accurate frequency measurement of a neutral atom optical transition to date. Relative instabilities of 2x10

Precision Atomic Spectroscopy for Improved Limits on Variation of the Fine Structure Constant and Local Position Invariance

February 16, 2007
Author(s)
Tara M. Fortier, Jason Stalnaker, Scott A. Diddams, Neil Ashby, Luca Lorini, Windell Oskay, Marie Delaney, James C. Bergquist, Steven R. Jefferts, Thomas E. Parker, Thomas P. Heavner, Filippo Levi, Jon H. Shirley, Wayne M. Itano, Kyoungsik Kim, Leo W. Hollberg
We report tests of local position invariance (LPI) and the constancy of fundamental constants from measurements of the frequency ratio of the 282-nm $^{199}$Hg$^+$ optical clock transition to the ground state hyperfine splitting in $^{133}$Cs. Analysis of

Trapped atomic ions and quantum information processing

July 16, 2006
Author(s)
David J. Wineland, Dietrich G. Leibfried, James C. Bergquist, Brad R. Blakestad, John J. Bollinger, Joseph W. Britton, J Chiaverini, Ryan Epstein, David Hume, Wayne M. Itano, John D. Jost, Emanuel H. Knill, Jeroen Koelemeij, C. Langer, R Ozeri, Rainer Reichle, Till P. Rosenband, Tobias Schaetz, Piet Schmidt, Signe Seidelin, Nobuyasu Shiga, Janus Wesenberg
The basic requirements for quantum computing and quantum simulation (Single- and multi-qubit gates, long memor times, etc.)have been demonstrated in separate experiments on trapped ions. Construction of a large-scale information processor will require

A single-atom optical clock with high accuracy

July 14, 2006
Author(s)
Windell Oskay, Scott A. Diddams, Elizabeth A. Donley, Tara M. Fortier, Thomas P. Heavner, Leo W. Hollberg, Wayne M. Itano, Steven R. Jefferts, M J. Jensen, Kyoungsik Kim, F Levi, Thomas E. Parker, James C. Bergquist
For the past fifty years, atomic frequency standards based on the cesium ground-state hyperfine splitting have been the most accurate timepieces in the world. One of the most accurate, current-generation, cesium standards is the NIST-F1 fountain, which has

Spectroscopy of atomic and molecular ions using quantum logic

June 25, 2006
Author(s)
Piet Schmidt, Till P. Rosenband, Jeroen Koelemeij, David Hume, Wayne M. Itano, James C. Bergquist, David J. Wineland
Recently developed techniques for quantum computation using trapped ions allow unprecedented coherent control of the internal and external states of single atoms. Here we report how these techniques can be employed to perform precision spectroscopy of