NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Spherical Reference Cavities for Ultra-Stable Lasers in Non-Laboratory Environments
Published
Author(s)
David R. Leibrandt, Michael J. Thorpe, Mark Notcutt, Robert E. Drullinger, Till P. Rosenband, James C. Bergquist
Abstract
We present an ultra-stable optical cavity design that is insensitive to both vibrations and orientation. The design is based on a spherical cavity spacer which is held rigidly at two points on a diameter of the sphere. Coupling of the support forces to the cavity length is eliminated by holding the sphere at a ``squeeze insensitive angle'' with respect to the optical axis. Finite element analysis is used to calculate the acceleration sensitivity of the spherical cavity for the ideal geometry ($\le 4(2) \times 10^{-12}$/g for accelerations in any direction) as well as for several varieties of fabrication errors. The spherical cavity acceleration sensitivity is measured with an initial version of the cavity mount to be $4.0(5) \times 10^{-11}$/g, $1.6(3) \times 10^{-10}$/g, and $3.1(1) \times 10^{-10}$/g for accelerations along the vertical and two horizontal directions. This low acceleration sensitivity combined with the orientation insensitivity that comes with a rigid mount indicates that this cavity design could be used for ultra-stable lasers in a non-laboratory environment.
Leibrandt, D.
, Thorpe, M.
, Notcutt, M.
, Drullinger, R.
, Rosenband, T.
and Bergquist, J.
(2011),
Spherical Reference Cavities for Ultra-Stable Lasers in Non-Laboratory Environments, Optics Express, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=907288
(Accessed October 17, 2025)