Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Aaron M. Forster (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 25 of 80

Connecting Molecular Exchange Dynamics to Stress Relaxation in Phase-Separated Dynamic Covalent Networks

January 22, 2024
Author(s)
Neil Dolinski, Ran Tao, Nicholas Boynton, Anthony Kotula, Charlie Lindberg, Kyle Petersen, Aaron M. Forster, Stuart Rowan
A suite of phase separated dynamic covalent networks based on highly tunable dynamic benzalcyanoacetate (BCA) thia-Michael acceptors are investigated. In situ kinetic studies on small molecule model systems are used in conjunction with macroscopic

Unintended consequences: Assessing thermo-mechanical changes in vinyl nitrile foam due to micro-computed X-ray tomographic imaging

October 5, 2023
Author(s)
Alexander Landauer, Zois Tsinas, Orion Kafka, Newell Moser, Jack Leigh Glover, Aaron M. Forster
Micro-computed X-ray tomography (μCT) is a volumetric imaging tool used to quantify the internal structure of materials. μCT imaging with mechanical testing (in situ μCT) helps visualize strain-induced structural changes and develop structure-property

A Materials Data Framework and Dataset for Elastomeric Foam Impact Mitigating Materials

June 5, 2023
Author(s)
Alexander Landauer, Orion Kafka, Newell Moser, Ian Foster, Ben Blaiszik, Aaron M. Forster
The availability of materials data for impact-mitigating materials has lagged behind applications-based data. For example, data describing on-field helmeted impacts are available, whereas material behaviors for the constituent impact mitigating materials

Activation of Mechanophores in a Thermoset Matrix by Instrumented Scratch

November 17, 2021
Author(s)
Chelsea S. Davis, Jeremiah Woodcock, Ryan Beams, Mitchell Rencheck, Muzhou Wang, Stephan J. Stranick, Aaron M. Forster, Jeffrey Gilman
Scratches in polymer coatings and barrier layers negatively impact optical properties (haze, light transmission, etc.), initiate routes of degradation or corrosion (moisture permeability), and nucleate delamination of the coating. Detecting scratches in

Temperature-insensitive silicone composites as ballistic witness materials: the impact of water content on the thermophysical properties

July 28, 2021
Author(s)
Ran Tao, Fan Zhang, Huong Giang Nguyen, Philip Bernstein, Amanda L. Forster, Randy Mrozek, Aaron M. Forster
In this work, different formulations of a room-temperature silicone composite backing material (SCBM) composed of polydimethylsiloxane (PDMS), fumed silica and corn starch were investigated using different characterization techniques, i.e., differential

Calibration Procedures for Orthogonal Superposition Rheology

November 18, 2020
Author(s)
Ran Tao, Aaron M. Forster
Orthogonal superposition (OSP) rheology is an advanced rheological technique that involves superimposing a small-amplitude oscillatory shear deformation orthogonal to a primary shear flow. This technique allows the measurement of structural dynamics of

Stress and Strain Heuristics for a Layered Elastomeric Foam at Medium Impact Rates

September 14, 2020
Author(s)
Alexander Landauer, Jared C. Van Blitterswyk, Michael A. Riley, Aaron M. Forster
Impact mitigating materials (IMMs) are used to reduce injury or damage due to a blunt impact, which often occurs at high rates or energies. Innovation in IMMs and designs strategies are required for the development of safer protective equipment. A key

Multiscale polymer dynamics in hierarchical carbon nanotube reinforced glass fiber composites

June 5, 2019
Author(s)
Ajay Krishnamurthy, Ran Tao, Erkan Senses, Sagar Doshi, Erik Thostenson, Faraz Burni, Bharath Natarajan, Donald L. Hunston, Amanda L. Forster, Aaron M. Forster
Carbon-nanotube (CNT) grafted glass fiber reinforced epoxy nanocomposites (GFRP) present a hierarchy of stiffness (GPa to MPa) and lengths (µm to nm) scales at the fiber-matrix interphase. The contribution of interfacial CNT networks to the local and bulk

Modifying interface cure properties of hierarchical CNT composites.

June 3, 2019
Author(s)
Ajay Krishnamurthy, Qi An, Aaron M. Forster
Hierarchical carbon nanotube (CNT) grafted fiber-reinforced polymer composites (FRP) display multifunctional capabilities such as enhanced mechanical and electrical properties that enable their use in structural applications. These properties are achieved

Raman Imaging of Surface and Sub-Surface Graphene Oxide in Fiber Reinforced Polymer Nanocomposites

March 1, 2019
Author(s)
Amber D. McCreary, Qi An, Aaron M. Forster, Kunwei Liu, Siyao He, Chris Macosko, Andreas Stein, Angela R. Hight Walker
The incorporation of nanofillers, such as graphene oxide (GO) into fiber reinforced polymer composites to improve their mechanical properties is a significant research area for a variety of industrial applications. However, to date there is no reliable

Road Mapping Workshop Report on Overcoming Barriers to Adoption of Composites in Sustainable Infrastructure

December 20, 2017
Author(s)
Richard J. Sheridan, Jeffrey W. Gilman, John Busel, David Hartman, Gale A. Holmes, Daniel Coughlin, Paul Kelley, Dustin Troutman, Jim Gutierrez, Charles Bakis, Robert Moser, Ellen Lackey, James R. Fekete, Stephanie S. Watson, Jae Hyun Kim, Aaron M. Forster, Ajay Krishnamurthy, Bharath NMN Natarajan, William O'Donnell
The February 2017 “Road Mapping Workshop on Overcoming Barriers to Adoption of Composites in Infrastructure” brought together designers, manufacturers, researchers, and end-users to identify barriers and potential solutions. Composite products produced in

Enhanced durability of CNT based hierarchical composites subjected to accelerated aging environments.

September 21, 2017
Author(s)
Ajay Krishnamurthy, Donald L. Hunston, Amanda L. Forster, Bharath NMN Natarajan, Sunny Wicks, Paul E. Stutzman, James A. Liddle, Aaron M. Forster, Brian L. Wardle
As carbon nanotube (CNT) based composites are increasingly being identified as viable aerospace materials, it is vital to study their environmental degradation characteristics. In this work, the durability of CNT reinforced hierarchical alumina fiber