Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: James(Trey) Porto (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 101 - 125 of 182

Strongly Inhibited Transport of a Degenerate 1D Bose Gas in a Lattice

April 1, 2005
Author(s)
C Fertig, K M. O'Hara, J H. Huckans, S L. Rolston, William D. Phillips, James V. Porto
We report the observation of strongly damped dipole oscillations of a quantum degenerate 1D atomic Bose gas in a combined harmonic and optical lattice potential. Damping is significant for very shallow axial lattices (0.25 photon recoil energies), and

Study of a 1D Interacting Quantum Bose Gas

October 1, 2004
Author(s)
B Laburthe, K M. O'Hara, J H. Huckans, M Anderlini, James V. Porto, S L. Rolston, William D. Phillips
The loading of a Bose-Einstein condensate into a deep 2D optical lattice provides a unique way to study 1D Bose gases: the strong radial confinement freezes any motion in two dimensions, and for deep enough lattices, the system can be seen as an array

Observation of Reduced Three-Body Recombination in a Fermionized 1D Bose Gas

May 14, 2004
Author(s)
B L. Tolra, K M. O'Hara, J H. Huckans, William D. Phillips, S L. Rolston, James V. Porto
We investigate correlation properties of a one-dimensional interacting Bose gas by loading a mangnetically trapped 87Rb Bose-Einstein condensate into a deep two-dimensional optical lattice. We measure the three-body recombination rate for both the BEC in

Superfluid-to-Mott-Insulating Transition in a One-Dimensional Atomic Gas

February 1, 2004
Author(s)
C Fertig, K M. O'Hara, J H. Huckans, James V. Porto, William D. Phillips
Over the past two decades, the Mott-insulating phase transition has received a great deal of attention as a prototypical example of a quantum phase transition in a strongly-correlated system for which quantum fluctuations drive the phase transition at zero

Adiabatic Loading of Bosons Into Optical Lattices

January 16, 2004
Author(s)
P B. Blakie, James V. Porto
We calculate the entropy-temperature curves for non-interacting bosons in a 3D optical lattice and a 2D lattice with transverse harmonic confinement for ranges of depths and filling factors relevant to current experiments. These curves predict regimes