Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Jonathan E. Guyer (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 25 of 84

Encouraging and Enabling Mutual Ownership in a RSE Community of Practice

November 21, 2022
Author(s)
Miranda Mundt, Jonathan Bisila, Jonathan E. Guyer, Daniel Howard, Daniel S. Katz, Reed Milewicz, Henry Schreiner, Joshua Teves, Chris Wiswell
The explosion of Research Software Engineers (RSEs) in the United States created the opportunity to form communities of practice (CoP), groups which share a passion for an activity and learn how to do it better as they interact regularly, specifically to

Co-Based Superalloy Morphology Evolution: A Phase Field Study Based on Experimental Thermodynamic and Kinetic Data

July 1, 2022
Author(s)
Carelyn E. Campbell, Ursula R. Kattner, Jonathan E. Guyer, James A. Warren, Wenkun Wu, Peter Voorhees, Olle Heinonen
Cobalt-based superalloys with gamma/gamma prime microstructures off er great promise as candidates for next-generation high-temperature alloys for applications, such as turbine blades. It is essential to understand the thermodynamic and kinetic factors

Phase Field Benchmark Problems for Nucleation

June 1, 2022
Author(s)
Wenkun Wu, David M. Taboada, Jonathan E. Guyer, Peter W. Voorhees, James A. Warren, Daniel Wheeler, Tamas Pusztai, Laszlo Granasy, Olle G. Heinonen
We present nucleation phase field model benchmark problems, expanding on our previous benchmark problems on diffusion, precipitation, dendritic growth, linear elasticity, fluid flow and electrochemistry. Nucleation is the first step in the formation of

IRIS-HEP Blueprint Workshop Summary: Learning from the Pandemic: the Future of Meetings in HEP and Beyond

June 30, 2021
Author(s)
Mark Neubauer, Todd Adams, Jennifer Adelman-McCarthy, Gabriele Benelli, Tulika Bose, David Britton, Ben Galewsky, Bo Jayatilaka, Brendan Kiburg, Maciej Gladki, Aman Goel, Jonathan E. Guyer, Pat Burchat, Joel Butler, Timothy Cartwright, Tomas Davidek, Jacques Dumarchez, Peter Elmer, Matthew Feickert, Mandeep Gill, Benjamin Krikler, David Lange, Claire Lee, Nick Manganelli, Giovanni Marchiori, Meenakshi Narain, Ianna Osborne, Jim Pivarski, Harrison Prosper, Graeme Stewart, Eduardo Rodrigues, Roberto Salerno, Marguerite Tonjes, Jaroslav Trnka, Vera Varanda, Vassil Vassilev, Gordon Watts, Sam Zeller, Yuanyuan Zhang
The COVID-19 pandemic has by-and-large prevented in-person meetings since March 2020. While the increasing deployment of effective vaccines around the world is a very positive development, the timeline and pathway to "normality" is uncertain and the "new

Phase Field Benchmark Problems Targeting Fluid Flow and Electrochemistry

January 28, 2020
Author(s)
Andrea Jokisaari, Wenkun Wu, P W. Voorhees, Jonathan E. Guyer, James A. Warren, Olle G. Heinonen
In this work, a third set of benchmark problems for phase field models are presented. These problems are being jointly developed by the Center for Hierarchical Materials Design (CHi- MaD) and the National Institute of Standards and Technology (NIST) along

PFHub: The Phase-Field Community Hub

April 17, 2019
Author(s)
Daniel Wheeler, Trevor Keller, Jonathan E. Guyer, James A. Warren, Stephen DeWitt, Andrea Jokisaari, Daniel Schwen, Larry Aagesen, Olle Heinonen, Michael Tonks, Peter Voorhees
An online portal provides a valuable space for scientific communities to summarize a shared challenge, collect attempts at a solution, and present a quantitative comparison of past attempts in a compelling way. An exemplar of such a portal is μMAG. The

Phase Field Benchmark Problems for Dendritic Growth and Linear Elasticity

June 15, 2018
Author(s)
Andrea Jokisaari, P W. Voorhees, Jonathan E. Guyer, James A. Warren, O. G. Heinonen
We present the second set of benchmark problems for phase field models that are being jointly developed by the Center for Hierarchical Design (CHiMaD) and the National Insti- tute of Standards and Technology (NIST) along with input from other members in

Formation of Nb-rich droplets in laser deposited Ni-matrix microstructures

March 15, 2018
Author(s)
Supriyo Ghosh, Mark R. Stoudt, Lyle E. Levine, Jonathan E. Guyer
Ni-rich $\gamma$ cells/dendrites and Nb-rich eutectic droplets that form during laser power bed fusion (LPBF) solidification of Ni-Nb alloys are studied in the present work using numerical simulations. Finite element simulations estimate the local cooling

Single Track Melt Pool Measurements and Microstructures in Inconel 625

February 20, 2018
Author(s)
Supriyo Ghosh, Li Ma, Lyle E. Levine, Richard E. Ricker, Mark R. Stoudt, Jarred C. Heigel, Jonathan E. Guyer
We use single track laser melting experiments and simulations on Inconel 625 to estimate the dimensions and microstructures of the resulting melt pools. Our work is based on a design-of- experiments approach which uses multiple laser power and scan speed

Application of Finite Element, Phase-field, and CALPHAD-based Methods to Additive Manufacturing of Ni-based Superalloys

September 21, 2017
Author(s)
Trevor Keller, Greta Lindwall, Supriyo Ghosh, Li Ma, Brandon M. Lane, Fan Zhang, Ursula R. Kattner, Eric Lass, Yaakov S. Idell, Maureen E. Williams, Andrew J. Allen, Jonathan E. Guyer, Lyle E. Levine
Numerical simulations are used in this work to investigate aspects of microstructure and microsegregation during rapid solidification of a Ni-based superalloy in a laser powder bed fusion additive manufacturing process. Thermal modeling by finite element