Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Alline F. Myers (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 12 of 12

Electron Paramagnetic Resonance Study of Carbonated Hydroxyapatite Synthesized through Calcium Phosphate Cements

August 5, 2022
Author(s)
Alline F. Myers, Shozo Takagi, Stanislav Frukhtbeyn, Laurence Chow, Veronika Szalai, Lonnie Cumberland, Ileana Pazos, Eaman Karim
Ionizing radiation-induced paramagnetic defects in calcified tissues like tooth enamel are indicators of irradiation dose. Hydroxyapatite (HA), the principal constituent in these materials, incorporates a variety of anions (CO32, F, Cl, SiO44 ) and

Low-resistance, high-yield electrical contacts to atom scale Si:P devices using palladium silicide

March 29, 2019
Author(s)
Scott W. Schmucker, Pradeep Namboodiri, Ranjit Kashid, Xiqiao Wang, Binhui Hu, Jonathan Wyrick, Alline Myers, Joshua D. Schumacher, Richard M. Silver, Michael Stewart
Scanning tunneling microscopy (STM) enables the fabrication of 2-D delta-doped structures in Si with atomistic precision, with applications from tunnel field effect transistors to qubits. The combination of a very small contact area and the restrictive

Quantifying Atom-scale Dopant Movement and Electrical Activation in Si:P Monolayers

January 26, 2018
Author(s)
Xiqiao Wang, Joseph A. Hagmann, Pradeep N. Namboodiri, Jonathan E. Wyrick, Kai Li, Roy E. Murray, Frederick Meisenkothen, Alline F. Myers, Michael D. Stewart, Richard M. Silver
Doped semiconductor structures with ultra-sharp dopant confinement, minimal lattice defects, and high carrier concentrations are essential attributes in the development of both ultra- scaled conventional semiconductor devices and emerging all-silicon

Strain engineering a 4a*?3a charge-density-wave phase in transition-metal dichalcogenide 1T-VSe2

July 19, 2017
Author(s)
Duming Zhang, Jeonghoon Ha, Hongwoo H. Baek, Yang-Hao Chan, Donat F. Natterer, Alline Myers, Joshua D. Schumacher, William Cullen, Albert Davydov, Young Kuk, Mei-Yin Chou, Nikolai Zhitenev, Joseph A. Stroscio
We report a new charge density wave (CDW) structure in strained 1T-VSe2 thin films synthesized by molecular beam epitaxy. The CDW structure is unconventional and exhibits a rectangular 4a×√3a periodicity, as opposed to the previously reported hexagonal 4a

Toward Clean Suspended CVD Graphene

August 26, 2016
Author(s)
Alexander Yulaev, Guangjun Cheng, Angela R. Hight Walker, Ivan Vlassiouk, Alline Myers, Marina S. Leite, Andrei Kolmakov
The application of suspended graphene as electron transparent supporting media in electron microscopy, vacuum electronics, and micromechanical devices requires the least destructive and maximally clean transfer from their original growth substrate to the

Silicon epitaxy on H-terminated Si (100) surfaces at 250deg C

March 31, 2016
Author(s)
Xiao Deng, Pradeep N. Namboodiri, Kai Li, Xiqiao Wang, Gheorghe Stan, Alline F. Myers, Xinbin Cheng, Tongbao Li, Richard M. Silver
Silicon on silicon growth at low temperatures has become increasing important due to its use to encapsulate buried nanoscale dopant devices. The performance of atomic scale devices is fundamentally affected by the quality of the silicon matrix in which the

Epitaxial Si encapsulation of highly misfitting SiC quantum dot arrays formed on Si (001)

January 8, 2014
Author(s)
Christopher W. Petz, Dongyue Yang, Alline Myers, Jeremey Levy, Jerrold Floro
This work examines Si overgrowth to encapsulate 3C-SiC quantum dot arrays epitaxially grown on Si substrates. Using transmission electron microscopy we show how the crystalline quality of the Si cap depends on the growth conditions. Overgrowth at 300ºC

TEM and EELS Investigation of a-C and ta-C Coated Field Emitters

October 1, 1997
Author(s)
Alline F. Myers, Eric B. Steel, M Q. Ding, S M. Camphausen, W B. Choi, J J. Cuomo, J J. Hren
The microstructure of highly sp 2 bonded amorphous carbon (a-C) and partially tetrahedrally bonded amorphous carbon (ta-C) films deposited on needle-shaped Mo field emitters by pulsed laser ablation and cathodic arc deposition techniques was studied using