Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

NIST Authors in Bold

Displaying 126 - 150 of 2275

Impact of Strong Atmospheric Turbulence on Two-Way Optical Time Transfer

May 8, 2023
Author(s)
Laura Sinclair, Emily Caldwell, Jean-Daniel Deschenes, Hugo Bergeron, William C. Swann, Nathan Newbury
Frequency comb based optical time transfer can provide femtosecond-level timing which will support future clock networks. However, for long-distance terrestrial links, non-reciprocal atmospheric turbulence induces a timing penalty. Here, we quantify this

Noise-resilient deep tomographic imaging

April 24, 2023
Author(s)
Zhen Guo, Zhiguang Liu, George Barbastathis, Qihang Zhang, Michael Glinsky, Bradley Alpert, Zachary H. Levine
X-ray tomography is a non-destructive imaging technique that reveals the interior of an object from its projections at different angles. Under limited-angle and low-photon sampling, a regularization prior is required to retrieve a high-fidelity

Symplectic geometry and circuit quantization

April 17, 2023
Author(s)
Andrew Osborne, Trevyn Larson, Sarah Jones, Raymond Simmonds, Andras Gyenis, Andrew Lucas
Circuit quantization is an extraordinarily successful theory that describes the behavior of quantum circuits with high precision. The most widely used approach of circuit quantization relies on introducing a classical Lagrangian whose degrees of freedom

Quantum back-action limits in dispersively measured Bose-Einstein condensates

April 8, 2023
Author(s)
Ian Spielman, Emine Altuntas
A fundamental tenet of quantum mechanics is that measurements change a system's wavefunction to that most consistent with the measurement outcome, even if no observer is present. Weak measurements produce only limited information about the system, and as a

NIST Time and Frequency Bulletin

April 4, 2023
Author(s)
Kelsey Rodriguez
The Time and Frequency Bulletin provides information on performance of time scales and a variety of broadcasts (and related information) to users of the NIST services.

Toward improved quantum simulations and sensing with trapped two-dimensional ion crystals via parametric amplification

March 29, 2023
Author(s)
Matthew Affolter, Wenchao Ge, Bryce Bullock, Shaun Burd, Kevin Gilmore, Jennifer Lilieholm, Allison Carter, John J. Bollinger
Improving coherence is a fundamental challenge in quantum simulation and sensing experiments with trapped ions. Here we discuss, experimentally demonstrate, and estimate the potential impacts of two different protocols that enhance, through motional

Interference induced anisotropy in a two-dimensional dark state optical lattice

March 27, 2023
Author(s)
Ian Spielman, Gediminas Juzeliunas, Edvinas Gvozdiovas
We describe a two-dimensional optical lattice for ultracold atoms with spatial structure below the diffraction limit created by a bichromatic optical standing wave. At every point in space these fields couple the internal atomic states in a three-level

Controlling solute trapping and solute drag in a phase-field model

March 16, 2023
Author(s)
Arnab Mukherjee, James A. Warren
The finite solid-liquid interface width in phase-field models results in non-equilibrium effects, including solute trapping. Prior phase field modeling has shown that this extra degree of freedom, when compared to sharp-interface models, results in solute

Modeling the linear and nonlinear dielectric response of solvents

March 13, 2023
Author(s)
Michael Woodcox, Avik Mahata, Aaron Hagerstrom, Angela Stelson, Chris Muzny, Ravishankar Sundararaman, Kathleen Schwarz
We demonstrate a method to compute the dielectric spectra of fluids in molecular dynamics by directly applying electric fields to the simulation. We obtain spectra from molecular dynamics simulations with low magnitude electric fields (0.01 V/A) in

VECSEL systems for quantum information processing with trapped beryllium ions

March 10, 2023
Author(s)
Shaun C. Burd, Jussi-Pekka Penttinen, Panyu Hou, Hannah Knaack, Sanna Ranta, Mika Maki, Emmi Kantola, Mircea Guina, Daniel Slichter, Dietrich Leibfried, Andrew C. Wilson
We demonstrate two systems based on vertical-external-cavity surface-emitting lasers (VECSELs) for producing ultraviolet laser light at wavelengths of 235 and 313 nm. The systems are suitable for quantum information processing with trapped beryllium ions
Displaying 126 - 150 of 2275