Skip to main content

NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.

Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.

U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

NIST Authors in Bold

Displaying 1126 - 1150 of 2493

Temperature extrapolation of multicomponent grand canonical free energy landscapes

August 7, 2017
Author(s)
Nathan Mahynski, Jeffrey R. Errington, Vincent K. Shen
We derive a method for extrapolating the grand canonical free energy landscape of a multicomponent fluid system from one temperature to another. Previously, we introduced this statistical mechanical framework for the case where kinetic energy contributions

Photonic-Chip Supercontinuum with Tailored Spectra for Counting Optical Frequencies

July 24, 2017
Author(s)
David R. Carlson, Daniel D. Hickstein, Alexander J. Lind, Judith B. Olson, Richard W. Fox, Roger C. Brown, Andrew D. Ludlow, Qing Li, Daron A. Westly, Tara M. Fortier, Kartik A. Srinivasan, Scott A. Diddams, Scott B. Papp
Supercontinuum generation using chip-integrated photonic waveguides is a powerful approach for spectrally broadening pulsed laser sources with very low pulse energies and compact form factors. When pumped with a mode-locked laser frequency comb, these

Ultrabroadband Supercontinuum Generation and Frequency-Comb Stabilization Using On-Chip Waveguides with Both Cubic and Quadratic Nonlinearities

July 24, 2017
Author(s)
Daniel D. Hickstein, Hojoong Jung, David R. Carlson, Alexander J. Lind, Ian R. Coddington, Kartik A. Srinivasan, Gabriel G. Ycas, Daniel C. Cole, Abijith S. Kowligy, Stefan Droste, Erin S. Lamb, Nathan R. Newbury, Hong X. Tang, Scott A. Diddams, Scott B. Papp
Using aluminum-nitride photonic-chip waveguides, we generate optical frequency comb supercontinuum spanning 500~nm to 4000~nm, and show that the spectrum can be widely tailored by changing the geometry of the waveguide. Since aluminum nitride exhibits both

Coulomb drag and counterflow Seebeck coefficient in bilayer-graphene double layers

July 21, 2017
Author(s)
Jiuning Hu, David B. Newell, Jifa Tian, Nikolai N. Klimov, Tailung Wu, Yong Chen
We have fabricated bilayer-graphene double layers separated by a thin (~20 nm) boron nitride layer and performed Coulomb drag and counterflow thermoelectric transport measurements. The measured Coulomb drag resistivity is nearly three orders smaller in

Demonstration of efficient nonreciprocity in a microwave optomechanical circuit

July 6, 2017
Author(s)
Gabriel A. Peterson, Florent Q. Lecocq, Katarina Cicak, Raymond W. Simmonds, Jose A. Aumentado, John D. Teufel
Abstract The ability to engineer nonreciprocal interactions is an essential tool in modern communication technology as well as a powerful resource for building quantum networks. Aside from large reverse isolation, a nonreciprocal device suitable for

Precision measurement of the radiative beta decay of the free neutron

June 30, 2017
Author(s)
Christopher D. Bass, Maynard S. Dewey, Thomas R. Gentile, Hans Pieter Mumm, Alan Keith Thompson, M J. Bales, R. Alarcon, E J. Beise, H Breuer, Jim Byrne, T E. Chupp, Kevin Coakley, R L. Cooper, B. O'Neill, F E. Wietfeldt
The theory of quantum electrodynamics predicts that a continuous spectrum of photons is emitted in the beta decay of the free neutron in addition to a proton, an electron, and an antineutrino. We report the first precision test of the shape of the photon

Frequency response of the external quantum efficiency in multijunction solar cells

June 29, 2017
Author(s)
Nicolas Marquez Peraca, D T. Bilir, Behrang Hamadani
The frequency dependence of the external quantum efficiency (EQE) of high-quality multijunction solar cells was examined by the modulated photocurrent spectroscopy method via an optical setup comprised of a light-pipe-coupled compact LED array. The optical

A pulsed scalar optically-pumped magnetometer

June 16, 2017
Author(s)
Vladislav P. Gerginov, Sean P. Krzyzewski, Svenja A. Knappe
A scalar magnetic field sensor based on 87Rb vapor millimeter-size cell is described. The magnetometer uses co-propagating pump/probe laser beam, amplitude modulation of the pump beam and non-demolition polarization rotation detection of the probe beam

A Low-Power Reversible Alkali Atom Source

June 13, 2017
Author(s)
Songbai Kang, Russell P. Mott, Kevin A. Gilmore, Logan D. Sorenson, Matthew T. Rahker, Elizabeth A. Donley, John E. Kitching, Christopher S. Roper
An electrically-controllable, solid-state, reversible device for sourcing and sinking alkali vapor is presented. When placed inside an alkali vapor cell, both an increase and decrease of the rubidium vapor density by a factor of two are demonstrated

Self-referenced frequency combs using high-efficiency silicon nitride waveguides

June 12, 2017
Author(s)
David R. Carlson, Daniel D. Hickstein, Alexander J. Lind, Stefan Droste, Daron A. Westly, Nima Nader, Ian R. Coddington, Nathan R. Newbury, Kartik A. Srinivasan, Scott A. Diddams, Scott B. Papp
We utilize silicon nitride waveguides to self-reference telecom-wavelength fiber frequency combs through supercontinuum generation using less than 15 mW total optical average power. This is approximately ten times lower than conventional approaches using

Preservation of surface conductivity and dielectric loss tangent in large-scale, encapsulated epitaxial graphene measured by non-contact microwave cavity perturbations

May 19, 2017
Author(s)
Albert F. Rigosi, Nicholas R. Glavin, Chieh-I Liu, Yanfei Yang, Jan Obrzut, Heather M. Hill, Jiuning Hu, Hsin Y. Lee, Angela R. Hight Walker, Curt A. Richter, Randolph E. Elmquist, David B. Newell
Regarding the improvement of current quantized Hall resistance (QHR) standards, one promising avenue is the growth of homogeneous monolayer epitaxial graphene (EG). A clean and simple process was used to produce large, precise areas of EG. Properties like
Displaying 1126 - 1150 of 2493
Was this page helpful?