Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

NIST Authors in Bold

Displaying 1126 - 1150 of 2503

Dispersive optical detection of magnetic Feshbach resonances in ultracold gases

August 18, 2017
Author(s)
Eite Tiesinga, B Sawyer, M Horvath, A Deb, N Kjaergaard
Magnetically tunable Feshbach resonances in ultracold atomic systems are chiefly identified and characterized through time consuming atom loss spectroscopy. We describe an off-resonant dispersive optical probing technique to rapidly locate Feshbach

Intricate Resonant Raman Response in Anisotropic ReS2

August 18, 2017
Author(s)
Amber McCreary, Jeffrey R. Simpson, Yuanxi Wang, Daniel Rhodes, Kazunori Fujisawa, Luis Balicas, Madan Dubey, Vincent H. Crespi, M. Terrones, Angela R. Hight Walker
Rhenium disulfide is an exciting material due to its strong in-plane anisotropy, thus offering an additional physical parameter that can be tuned for advanced applications. ReS2 provides a major advantage for optoelectronics as it is both stable in air and

Coarse-grained model of the dynamics of electrolyte solutions

August 17, 2017
Author(s)
Jack F. Douglas, Marat Andreev, Juan J. de Pablo, Alexandros Chremos
Ion specific solvation has fundamental implications in biochemistry and the thermo- dynamics and dynamics of aqueous salt solutions has correspondingly been investigated intensively. Nonetheless, recent works have indicated fundamental unresolved issues in

Temperature extrapolation of multicomponent grand canonical free energy landscapes

August 7, 2017
Author(s)
Nathan Mahynski, Jeffrey R. Errington, Vincent K. Shen
We derive a method for extrapolating the grand canonical free energy landscape of a multicomponent fluid system from one temperature to another. Previously, we introduced this statistical mechanical framework for the case where kinetic energy contributions

Photonic-Chip Supercontinuum with Tailored Spectra for Counting Optical Frequencies

July 24, 2017
Author(s)
David R. Carlson, Daniel D. Hickstein, Alexander J. Lind, Judith B. Olson, Richard W. Fox, Roger C. Brown, Andrew D. Ludlow, Qing Li, Daron A. Westly, Tara M. Fortier, Kartik A. Srinivasan, Scott A. Diddams, Scott B. Papp
Supercontinuum generation using chip-integrated photonic waveguides is a powerful approach for spectrally broadening pulsed laser sources with very low pulse energies and compact form factors. When pumped with a mode-locked laser frequency comb, these

Ultrabroadband Supercontinuum Generation and Frequency-Comb Stabilization Using On-Chip Waveguides with Both Cubic and Quadratic Nonlinearities

July 24, 2017
Author(s)
Daniel D. Hickstein, Hojoong Jung, David R. Carlson, Alexander J. Lind, Ian R. Coddington, Kartik A. Srinivasan, Gabriel G. Ycas, Daniel C. Cole, Abijith S. Kowligy, Stefan Droste, Erin S. Lamb, Nathan R. Newbury, Hong X. Tang, Scott A. Diddams, Scott B. Papp
Using aluminum-nitride photonic-chip waveguides, we generate optical frequency comb supercontinuum spanning 500~nm to 4000~nm, and show that the spectrum can be widely tailored by changing the geometry of the waveguide. Since aluminum nitride exhibits both

Coulomb drag and counterflow Seebeck coefficient in bilayer-graphene double layers

July 21, 2017
Author(s)
Jiuning Hu, David B. Newell, Jifa Tian, Nikolai N. Klimov, Tailung Wu, Yong Chen
We have fabricated bilayer-graphene double layers separated by a thin (~20 nm) boron nitride layer and performed Coulomb drag and counterflow thermoelectric transport measurements. The measured Coulomb drag resistivity is nearly three orders smaller in

Demonstration of efficient nonreciprocity in a microwave optomechanical circuit

July 6, 2017
Author(s)
Gabriel A. Peterson, Florent Q. Lecocq, Katarina Cicak, Raymond W. Simmonds, Jose A. Aumentado, John D. Teufel
Abstract The ability to engineer nonreciprocal interactions is an essential tool in modern communication technology as well as a powerful resource for building quantum networks. Aside from large reverse isolation, a nonreciprocal device suitable for

Precision measurement of the radiative beta decay of the free neutron

June 30, 2017
Author(s)
Christopher D. Bass, Maynard S. Dewey, Thomas R. Gentile, Hans Pieter Mumm, Alan Keith Thompson, M J. Bales, R. Alarcon, E J. Beise, H Breuer, Jim Byrne, T E. Chupp, Kevin Coakley, R L. Cooper, B. O'Neill, F E. Wietfeldt
The theory of quantum electrodynamics predicts that a continuous spectrum of photons is emitted in the beta decay of the free neutron in addition to a proton, an electron, and an antineutrino. We report the first precision test of the shape of the photon
Displaying 1126 - 1150 of 2503
Was this page helpful?