Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

NIST Authors in Bold

Displaying 2376 - 2400 of 2934

Laser Offset Stabilization with Chip-Scale Atomic Diffractive Elements

June 7, 2024
Author(s)
Heleni Krelman, Ori Nefesh, Kfir Levi, Douglas Bopp, Songbai Kang, Liron Stern, John Kitching
Achieving precise and adjustable control over laser frequency is an essential requirement in numerous applications such as precision spectroscopy, quantum control, and sensing. In many of such applications it is desired to stabilize a laser with a variable

Indirect Cooling of Weakly Coupled Trapped-Ion Mechanical Oscillators

April 2, 2024
Author(s)
Panyu Hou, Jenny Wu, Stephen Erickson, Giorgio Zarantonello, Adam Brandt, Daniel Cole, Andrew C. Wilson, Daniel Slichter, Dietrich Leibfried
Cooling the motion of trapped ions to near the quantum ground state is crucial for many ap- plications in quantum information processing and quantum metrology. However, some motional modes of trapped ions are difficult to cool because they only interact

ON THE DEVELOPMENT OF AN OPTICAL RUBIDIUM VECTOR ATOMIC MAGNETOMETER

July 16, 2023
Author(s)
Ying-Ju Wang, John Kitching, Isaac Fan, Yang Li
The precise measurement of magnetic fields is a fundamental tool of remote sensing. However, accurately measuring the direction of magnetic fields is challenging with atomic magnetometers. The standard approach of collecting vector measurements involves

Toward a common standard for data and specimen provenance in life sciences

April 18, 2023
Author(s)
Rudolf Wittner, Petr Holub, Cecilia Mascia, Francesca Frexia, Heimo Muller, Markus Plass, Clare M Allocca, Fay Betsou, Tony Burdett, Ibon Cancio, Adriane Chapman, Martin Chapman, Melanie Courtot, Vasa Curcin, Johann Eder, Mark Elliot, Katrina Exter, Carole Goble, Martin Golebiewski, Bron Kisler, Andreas Kremer, Simone Leo, Sheng Lin-Gibson, Anna Marsano, Marco Mattavelli, Josh Moore, Hiroki NAKAE, Isabelle PERSEIL, Ayat Salman, James Sluka, Stian Soiland-Reyes, Caterina Strambio De Castillia, michael sussman, Jason Swedlow, Kurt Zatloukal, Joerg Geiger
Open and practical exchange, dissemination, and reuse of specimens and data have become a fundamental requirement for life sciences research. The quality of the data obtained and thus the findings and knowledge derived is thus significantly influenced by

Rydberg Excitons and Trions in Monolayer MoTe2

April 12, 2023
Author(s)
Souvik Biswas, Aurelie Champagne, Jonah Haber, supavit pokawanvit, Joeson Wong, Hamidreza Akbari, Sergiy Krylyuk, Kenji Watanabe, Albert Davydov, Zakaria Al Balushi, Felipe H. da Jornada, Diana Qiu, Jeffrey Neaton, Harry Atwater
Monolayer transition metal dichalcogenide (TMDC) semiconductors exhibit strong excitonic optical resonances which serve as a microscopic, non-invasive probe into their fundamental properties. Like the hydrogen atom, such excitons can exhibit an entire

Wideband Synthetic-Aperture Millimeter-Wave Spatial-Channel Reference System With Traceable Uncertainty Framework

January 24, 2023
Author(s)
Kate Remley, Peter Vouras, Ben Jamroz, Alec Weiss, Jeanne Quimby, Dylan Williams, Rod Leonhardt, Damla Guven, Rob Jones, Joshua Kast
This paper describes a wideband synthetic-aperture system and the associated Fourier processing for generating high-resolution spatial and temporal estimates of the signal propagation environment in wireless communication channels at millimeter-wave

Room-temperature valence transition in a strain-tuned perovskite oxide

December 15, 2022
Author(s)
Vipul Chaturvedi, Supriya Ghosh, Dominique Gautreau, William M. Postiglione, John E. Dewey, Patrick Quarterman, Purnima P. Balakrishnan, Brian Kirby, Hua Zhou, Huikui Cheng, Amanda Huon, Timothy Charlton, Michael R. Fitzsimmons, Caroline Korostynski, Andrew Jacobson, Lucca Figari, Javier Garcia Barriocanal, T. Birol, K. A. Mkhoyan, Chris Leighton
Cobalt oxides have long been understood to display intriguing phenomena known as spin-state crossovers, where the cobalt ion spin changes vs. temperature, pressure, etc. A very different situation was recently uncovered in praseodymium-containing cobalt

Machine learning enabling high-throughput and remote operations at large-scale user facilities

May 18, 2022
Author(s)
Bruce D. Ravel, Tatiana Konstantinova, Phillip Michael Maffettone, Stuart Campbell, Andi Barbour, Daniel Olds
Imaging, scattering, and spectroscopy are fundamental in understanding and discovering new functional materials. Contemporary innovations in automation and experimental techniques have led to these measurements being performed much faster and with higher

The MaCFP Condensed Phase Working Group: A Structured, Global Effort Towards Pyrolysis Model Development

November 23, 2021
Author(s)
Isaac Leventon, Benjamin Batiot, Morgan Bruns, Simo Hostikka, Yuji Nakamura, Pedro Reszka, Thomas Rogaume, Stanislav Stoliarov
The International Association for Fire Safety Science (IAFSS) Working Group on Measurement and Computation of Fire Phenomena (i.e., the MaCFP Working Group) has been established as a global collaborative effort between experimentalists and modelers in the

Growth of Magnetic Nanowires in an Applied Field

October 12, 2021
Author(s)
R D K. Misra, H Nathani, William F. Egelhoff Jr.
Nanostructured quasi one-dimensional magnetic materials (nanowires) have attracted significant scientific and technological interest because they exhibit unique magnetic properties not displayed by their bulk or nanoparticle counterparts. Nanocrystalline

Optical Scattering Characteristics of 3D Lunar Regolith Particles Measured using X-Ray Nano Computed Tomography

April 27, 2021
Author(s)
Edward Garboczi, Ann Debay, Somen Baidya, Ahmed M. Hassan, Andrew Sharits, Jay D. Goguen, Thomas Lafarge, Mikolas Melius
Shape is a critical property, besides size and material composition, which has a strong effect on the optical scattering characteristics of a particle. In this work, we computationally study how the measured three-dimensional shapes of lunar regolith

Grand Challenges in Pharmaceutical Research Series: Ridding the Cold Chain for Biologics

February 8, 2021
Author(s)
Yihua B. Yu, Katharine T. Briggs, Marc B. Taraban, Robert Brinson, John Marino
Biologics are complex pharmaceuticals that include formulated proteins, plasma products, vaccines, cell and gene therapy products, and biological tissues. These products are fragile and typically require cold chain for their delivery and storage

Antichiral Spin Order, its Soft Modes, and their Hybridization with Phonons in the Topological Semimetal Mn 3 Ge

August 3, 2020
Author(s)
Y. Chen, Jonathan Gaudet, S. Dasgupta, G. G. Marcus, J. Lin, T. Chen, T. Tomita, M. Ikhlas, Yang Zhao, Wangchun Chen, Matthew B. Stone, O. Tchernyshyov, S. Nakatsuji, Collin L. Broholm
Quantum materials with strong transport responses to disparate physical quantities are of great fundamental significance and may hold technological potentials. The interplay between interactions and topology drive such responses through the effects of

Using Operando Techniques to Understand and Design Alkaline Membrane Fuel Cells with Excellent Performance and Long Operational Stability

July 16, 2020
Author(s)
Xiong Peng, Devashish Kulkarni, Ying Huang, Travis J. Omasta, Benjamin Ng, Yiwei Zheng, Lianqin Wang, Jacob LaManna, Daniel S. Hussey, John R. Varcoe, Iryna V. Zenyuk, William E. Mustain
Operando neutron imaging and operando micro X-ray computed tomography were used to understand the water dynamics of AEMFCs under various operating conditions, and this new fundamental information was used to create electrodes that not only enabled high

Broadband Lamb shift in an engineered quantum system

March 11, 2019
Author(s)
Matti Silveri, S Masuda, Vasilii Sevriuk, K-Y Tan, Mate Jenei, Eric Hyyppa, Fabian Hassler, Matti Partanen, Jan Goetz, Russell Lake, Leif Gronberg, Mikko Mottonen
The shift of the energy levels of a quantum system owing to broadband electromagnetic vacuum fluctuations-the Lamb shift-has been central for the development of quantum electrodynamics and for the understanding of atomic spectra. Identifying the origin of

Coherent light brightens the frontier of quantum science and technology

February 1, 2019
Author(s)
Jun Ye, Margaret Murnane
The precise control of coherent light across a vast spectral span has enabled revolutionary progress in precision measurements and the quantum control of atomic, molecular, and condensed matter systems. The laser was invented about 60 years ago (1) — 30

Spectroscopic Signature of the Oxygen States in Peroxides

October 16, 2018
Author(s)
Zengqing Zhuo, Chaitanya D. Pemmaraju, John Vinson, Chunjing Jia, Brian Moritz, Ilkyu Lee, Shawn Sallies, Qinghao Li, Jinpeng Wu, Kehua Dai, Yi-De Chuang, Zahid Hussain, Feng Pan, Thomas P. Devereaux, Wanli Yang
Recent debates on the nonconventional oxygen behaviors in electrochemical devices have triggered a pressing demand of a reliable detection and understanding of non-divalent oxygen states beyond conventional oxygen absorption spectroscopy. Here, enabled by

Precision determination of absolute neutron flux

June 8, 2018
Author(s)
Jeffrey S. Nico, Maynard S. Dewey, David M. Gilliam, Andrew T. Yue, Eamon Anderson, Geoff Greene, Alexander Laptev, William M. Snow
A technique for establishing the total neutron rate of a highly-collimated monochromatic cold neutron beam was demonstrated using the method of an alpha- gamma counter. The method requires only the counting of measured rates and is independent of neutron

NIST Standards for Measurement, Instrument Calibration, and Quantification of Gaseous Atmospheric Species

March 2, 2018
Author(s)
George C. Rhoderick, Michael E. Kelley, Walter R. Miller Jr., James E. Norris, Jennifer Carney, Lyn Gameson, Christina Cecelski, Cassie Goodman, Abneesh Srivastava, Joseph Hodges
There are many gas species present in the atmosphere that are associated with the earth’s climate. These compounds absorb and emit radiation, a process which is the fundamental cause of the greenhouse effect. The major greenhouse gases in the earth’s

Application of the Advanced Distillation Curve Method to the Comparison of Diesel Fuel Oxygenates: 2,5,7,10-Tetraoxaundecane (TOU), 2,4,7,9-Tetraoxadecane (TOD), and Ethanol/Fatty Acid Methyl Ester (FAME) Mixtures

June 22, 2017
Author(s)
Jessica L. Burger, Tara M. Lovestead, Mark LaFollette, Thomas J. Bruno
Although they are amongst the most efficient engine types, compression-ignition engines have difficulties achieving acceptable particulate emission and NOx formation. Indeed, catalytic after-treatment of diesel exhaust has become common and current efforts

Trion Valley Coherence in Monolayer Semiconductors

May 22, 2017
Author(s)
Kai Hao, Lixiang Xu, Wu Fengcheng, Philip Nagler, Kha Tran, Xin Ma, Tobias Korn, Allan H. MacDonald, Xiaoqin Li, Galan Moody
The emerging field of valleytronics aims to exploit the valley pseudospin of electrons residing near Bloch band extrema as an information carrier. Recent experiments demonstrating optical generation and manipulation of exciton valley coherence (the
Displaying 2376 - 2400 of 2934
Was this page helpful?