Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

NIST Authors in Bold

Displaying 26 - 50 of 83

A quantum enigma machine: Experimentally demonstrating quantum data locking

August 12, 2016
Daniel Lum, Michael S. Allman, Thomas Gerrits, Cosmo Lupo, Seth Lloyd, Varun Verma, Sae Woo Nam, John Howell
During the first half of the 20th century, enigma machines (i.e., pseudorandom polyalphabetic ciphers) of increasing sophistication gave better resistance against brute-force codebreaking attacks. However, the ultimate form of cryptographic security is

A significant-loophole-free test of Bell's theorem with entangled photons

December 16, 2015
Marissa Giustina, Marijn Versteegh, Soren Wengerowsky, Johannes Handsteiner, Armin Hochrainer, Kevin Phelan, Fabian Steinlechner, Johannes Koffler, Larsson Jan-Ake, Carlos Abellan, Waldimar Amaya, Valerio Pruneri, Morgan Mitchell, Joern Beyer, Thomas Gerrits, Adriana Lita, Krister Shalm, Sae Woo Nam, Thomas Scheidl, Rupert Ursin, Bernhard Wittmann, Anton Zeilinger
Local realism is the worldview in which physical properties of objects exist independently of measurement and where physical influences cannot travel faster than the speed of light. Bell's theorem states that this worldview is incompatible with the

Comparing the Linewidths from Single-Pass SPDC and Singly-Resonant Cavity SPDC

September 3, 2015
Oliver T. Slattery, Lijun Ma, Paulina S. Kuo, Xiao Tang
Spontaneous parametric down-conversion (SPDC) is a common method to generate entangled photon pairs for use in quantum communications. The generated single photon linewidth is a critical issue for photon-atom interactions in quantum memory applications. We

EIT Quantum Memory with Cs Atomic Vapor for Quantum Communication

September 1, 2015
Lijun Ma, Oliver T. Slattery, Paulina S. Kuo, Xiao Tang
Quantum memory is a key device in the implementation of quantum repeaters for quantum communications and quantum networks. We demonstrated a quantum memory based on electromagnetically-induced transparency (EIT) in a warm cesium atomic cell. The quantum

Statistically background-free, phase-preserving parametric up-conversion with faint light

July 9, 2015
Yu-Hsiang Cheng, Tim O. Thomay, Glenn S. Solomon, Alan L. Migdall, Sergey Polyakov
We demonstrate phase preservation in a frequency up-conversion process at the single-photon level. This phase preservation enables the applications of frequency conversion of entangled photon pairs. Periodically poled lithium niobate waveguides and a 1550

High-dimensional hyperentanglement of mode-locked two-photon states

June 29, 2015
Zhenda Xie, Tian Zhong, Sajan Shrestha, XinAn Xu, Junlin Liang, Yan-Xiao Gong, Alessandro Restelli, Jeffrey Shapiro, Franco N. Wong, Chee Wei Wong, Joshua Bienfang
Quantum entanglement is the fundamental resource for quantum information processing and communications, including secure data rates with higher capacities and better error resilience [1-9]. In dense-coded quantum communication channels, it is desirable to

Photon-efficient high-dimensional quantum key distribution

February 4, 2015
Tian Zhong, Hongchao Zhou, Rob Horansky, Catherine Lee, Varun Verma, Adriana Lita, Alessandro Restelli, Joshua Bienfang, Richard Mirin, Thomas Gerrits, Sae Woo Nam, Francesco Marsili, Zhenshen Zhang, Ligong Wang, Dirk Englund, Gregory Wornell, Jeffrey Shapiro, Franco N. Wong
Quantum key distribution (QKD) is a secure communication technology whose security is guaranteed by the laws of physics. However, its widespread use has been hindered in part by low secure-key throughput due to the inherent loss and de-coherence of photons

Bounds on quantum communication via Newtonian gravity

January 15, 2015
Jacob M. Taylor, Dvir Kafri, G J. Milburn
The classical understanding of gravity yields specific observ- able consequences, the most striking of which is the emergence of a 1/r2 force. In so far as communication can arise via such interactions between distant particles, we can ask what would be

Environment-assisted quantum control of a solid state spin via 2-color coherent dark states

September 7, 2014
Jacob M. Taylor, Jack Hansom, Carsten Schulte, Claire Le Gall, Clemens Matthiesen, Edmund Clarke, Maxime Hugues, Mete Atature
Semiconductor quantum dots (QDs) offer an efficient and scalable interface between single spins and optical photons. However, the solid-state environment of the QD represents an inherent source of noise, generally considered detrimental to coherent control

A classical channel model for gravitational decoherence

June 26, 2014
Jacob M. Taylor, Dvir Kafri, G J. Milburn
We show that, by treating the gravitational interaction between two mechanical resonators as a classical measurement channel, a gravitational decoherence model results that is equivalent to a model first proposed by Diosi. The resulting decoherence model

Photon-Efficient High-Dimensional Quantum Key Distribution

June 12, 2014
Tian Zhong, Hongchao Zhou, Ligong Wang, Gregory Wornell, Zheshen Zhang, Jeffrey Shapiro, Franco N. Wong, Rob Horansky, Varun Verma, Adriana Lita, Richard Mirin, Thomas Gerrits, Sae Woo Nam, Alessandro Restelli, Joshua Bienfang, Francesco Marsili, Matthew Shaw
We demonstrate two high-dimensional QKD protocols - secure against collective Gaussian attacks - yielding up to 8.6 secure bits per photon and 6.7 Mb/s throughput, with 6.9 bits per photon after transmission through 20 km of fiber.

Optical detection of radio waves through a nanomechanical transducer

March 5, 2014
Jacob M. Taylor, Tolga Bagci, A Simonsen, Silvan Schmid, L Villanueva, Emil Zeuthen, Anders Sorensen, Koji Usami, A Schliesser, E.S. Polzik
Low-loss transmission and sensitive recovery of weak radio-frequency (rf) and mi- crowave signals is an ubiquitous technological challenge, crucial in fields as diverse as radio astronomy, medical imaging, navigation and communication, including those of

Graphene-on-dielectric micromembrane for optoelectromechanical hybrid devices

February 7, 2014
Jacob M. Taylor, Silvan Schmid, Tolga Bagci, Emil Zeuthen, Patrick Herring, Maja Cassidy, C. M. Marcus, Bartolo Amato, Anja Boisen, Yong C. Shin, Jing Kong, Anders Sorensen, Koji Usami, E.S. Polzik
Due to their exceptional mechanical and optical properties, dielectric silicon nitride (SiN) mi- cromembranes have become the centerpiece of many optomechanical experiments. Efficient capac- itive coupling of the membrane to an electrical system would

Semiconductor-based detectors

December 13, 2013
Sergio Cova, Massimo Ghioni, Mark A. Itzler, Joshua Bienfang, Alessandro Restelli
There is nowadays a widespread and growing interest in low-level light detection and imaging. This interest is driven by the need for high sensitivity in various scientific and industrial applications such as fluorescence spectroscopy in life and material

Imaging topological edge states in silicon photonics

October 20, 2013
Mohammad Hafezi, Jingyun Fan, Alan L. Migdall, Jacob M. Taylor
Systems with topological oder exhibit exotic phenomena including fractional statistics. While most systems with topological order have been electronic, advances in our understanding of synthetic gauge fields have enabled realization of topological order in

Entangled photon generation in a phase-modulated, quasi-phasematched crystal

October 14, 2013
Paulina S. Kuo, Jason S. Pelc, Oliver T. Slattery, Yong-Su Kim, Xiao Tang
We propose a scheme to generate polarization-entangled photon pairs by spontaneous parametric downconversion in a phase-modulated, type-II, quasi-phasematched (QPM) crystal. Instead of using two distinct crystals to generate |HV>and |VH> states, the phase
Displaying 26 - 50 of 83