An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Kevin J. Coakley, Jolene D. Splett, Thomas Gerrits
To calibrate an optical transition edge sensor, for each pulse of the light source (e.g., pulsed laser), one must determine the ratio of the expected number of photons that deposit energy and the expected number of photons created by the laser. Based on
Coherent states are used to prepare a crystal using the Atomic Frequency Comb protocol for quantum memory. Here, semiclassical theory is developed and compared to experimental photon echoes of a coherent pulse.
We present a study of noncritical phasematching in thin-film, periodically poled lithium niobate waveguides. Noncritical phasematching relaxes fabrication tolerances and is needed for long devices or when ideal tuning curves are required.
Qianwei Zhou, Mingze Liu, Wenqi Zhu, Lu Chen, Yongze Ren, Henri Lezec, Yanqing Lu, Ting Xu, Amit Agrawal
Perfect vortex beam (PVB) is a propagating optical field carrying orbital angular momentum (OAM) with a radial intensity profile that is independent of topological charge. PVB can be generated through the Fourier transform of a Bessel-Gaussian beam, which
High-resolution imaging of ultracold atoms typically requires custom high numerical aperture (NA) optics, as is the case for quantum gas microscopy. These high NA objectives involve many optical elements each of which contributes to loss and light
Jorge Neira, Solomon I. Woods, James E. Proctor, Joseph P. Rice
We have demonstrated the first continuous-scan Electrical Substitution Fourier Transform Spectrometer (ES-FTS), which serves initially as an apparatus for absolute spectral responsivity calibrations of detectors over the wavelength range from 1.5 µm to 11
Chenglong You, Mingyuan Hong, Peter Bierhorst, Adriana Lita, Scott Glancy, Steven Kolthammer, Emanuel Knill, Sae Woo Nam, Richard Mirin, Omar Magana-Loaiza, Thomas Gerrits
The quantum statistical fluctuations of the electromagnetic field establish fundamental limits on the sensitivity of optical measurements. This fundamental limit, known as the shot-noise limit, imposes constraints on classical technologies, which can be
Kenneth Voss, Edouard Leymarie, Stephanie Flora, B. Carol Johnson, Arthur Gleason, Mark Yarbrough, Michael Feinholz, Terrance Houlihan
A 3-D instrument self-shading correction has been developed for the MOBY upwelling radiance measurements. This correction was tested using the 23 year time series of MOBY measurements, at the Lanai, Hawaii site. The correction is small (less than 2%)
Jasper Stroud, James Simon, Gerd Wagner, David Plusquellic
A chirped-pulse interleaving method is reported for generation of dual optical frequency combs based on electro-optic phase modulators (EOM) in a free-running all-fiber based system. The interleaving scheme effectively separates the EOM's (+) and (-)
Heather Patrick, Catherine Cooksey, Thomas A. Germer, Maria E. Nadal, Clarence Zarobila
The NIST Robotic Optical Scattering Instrument (ROSI) serves as the national reference instrument for specular and diffuse bidirectional reflectance measurements in the ultraviolet (UV) to short-wave infrared (SWIR) wavelength regions. This paper gives a
We describe an algorithm to extract the complex refractive index of a material from broadband reflectance and transmittance measurements taken by spectrophotometers. The algorithm combines Kramers-Kronig analysis with an inversion of Fresnel's equations to
Jay H. Hendricks, Zeeshan Ahmed, Daniel Barker, Kevin O. Douglass, Stephen Eckel, James A. Fedchak, Nikolai Klimov, Jacob Edmond Ricker, Julia Scherschligt
The NIST on a Chip (NOAC) program's central idea is the idea that measurement technology can be developed to enable metrology to be performed "outside the National Metrology Institute" by the crea-tion of deployed and often miniaturized standards. These
Georges Pavlidis, Jeffrey Schwartz, Joseph Matson, Thomas Folland, Song Liu, James Edgar, Joshua Caldwell, Andrea Centrone
Hyperbolic phonon polaritons (HPhPs) enable arbitrarily high confinements, low losses, and directional propagation – providing opportunities from hyperlensing to flat optics, and other advanced nanophotonics applications. In this work, two near-field