NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Heather Patrick, Catherine Cooksey, Thomas A. Germer, Maria E. Nadal, Clarence Zarobila
The NIST Robotic Optical Scattering Instrument (ROSI) serves as the national reference instrument for specular and diffuse bidirectional reflectance measurements in the ultraviolet (UV) to short-wave infrared (SWIR) wavelength regions. This paper gives a
We describe an algorithm to extract the complex refractive index of a material from broadband reflectance and transmittance measurements taken by spectrophotometers. The algorithm combines Kramers-Kronig analysis with an inversion of Fresnel's equations to
Jay H. Hendricks, Zeeshan Ahmed, Daniel Barker, Kevin O. Douglass, Stephen Eckel, James A. Fedchak, Nikolai Klimov, Jacob Edmond Ricker, Julia Scherschligt
The NIST on a Chip (NOAC) program's central idea is the idea that measurement technology can be developed to enable metrology to be performed "outside the National Metrology Institute" by the crea-tion of deployed and often miniaturized standards. These
Georges Pavlidis, Jeffrey Schwartz, Joseph Matson, Thomas Folland, Song Liu, James Edgar, Joshua Caldwell, Andrea Centrone
Hyperbolic phonon polaritons (HPhPs) enable arbitrarily high confinements, low losses, and directional propagation – providing opportunities from hyperlensing to flat optics, and other advanced nanophotonics applications. In this work, two near-field
Varun Verma, Adriana Lita, Yao Zhai, Heli C. Vora, Richard Mirin, Sae Woo Nam, Boris Korzh, Alex Walter, Ryan Briggs, Marco Colangelo, Emma Wollman, Andrew Beyer, Jason Allmaras, D. Zhu, Ekkehart Schmidt, A. G. Kozorezov, Matthew Shaw
We developed superconducting nanowire single-photon detectors (SNSPDs) based on tungsten silicide (WSi) that show saturated internal detection efficiency up to a wavelength of 10 um. These detectors are promising for applications in the mid-infrared
This report details the results of the Inter-American Metrology System (SIM) key comparison on regular spectral transmittance (SIM.PR-K6.2010). Eight national metrology institutes participated in the comparison, which covered the spectral range from 380 nm
Dianne L. Poster, C Cameron Miller, Richard Martinello, Norman Horn, Michael T. Postek, Troy Cowan, Yaw S. Obeng, John J. Kasianowicz
The National Institute of Standards and Technology (NIST) hosted an international workshop on ultraviolet-C (UV-C) disinfection technologies on January 14 – 15, 2020 in Gaithersburg, Maryland in collaboration with the International Ultraviolet Association
Sunil Mittal, Gregory Moille, Kartik Srinivasan, Yanne Chembo, Mohammad Hafezi
Recent advances in realizing optical frequency combs using nonlinear parametric processes in integrated photonic resonators have revolutionized on-chip optical clocks, spectroscopy, and multi channel optical communications. At the same time, the
Varun Verma, Richard Mirin, Sae Woo Nam, Jan P. Hoepker, Maximilian Protte, Raimund Ricken, Victor Quiring, Christof Eigner, Christine Silberhorn, Tim J. Bartley
We demonstrate the integration of amorphous tungsten silicide superconducting nanowire single- photon detectors on titanium in-diffused lithium niobate waveguides. We show proof-of-principle detection of evanescently-coupled photons of wavelength 1550nm
Photo-induced second harmonic generation (SHG) in centro-symmetric materials like silica and silicon nitride has been commonly explained as an effective second-order (chi(2)) process mediated by a DC electric field and the medium's third-order (chi(3))
Sida Xing, Daniel Lesko, Takeshi Umeki, Tsung Han Wu, Alexander Lind, Nazanin Hoghooghi, Scott Diddams
Broad bandwidth mid-infrared frequency combs are important for molecular spectroscopy in a wide range of fundamental and applied research. However, realization of such light sources in a compact and robust format remains a challenge. In this paper, we
Advances in integrated photonics open exciting opportunities for batch-fabricated optical nano- electro-mechanical sensors with ultra-high sensitivities and bandwidths enabled by cavity optomechanics. However, heat from the amplified optical intensity
Aaron Goldfain, Chris Yung, Kimberly Briggman, Jeeseong C. Hwang
We apply pulsed optical phase contrast microscopy to measure the absolute pressure amplitudes of complex ultrasonic fields generated by planar and focused transducers at frequencies up to 20 MHz.
Shangjie Guo, Amilson R. Fritsch, Ian Spielman, Justyna Zwolak
Most data in cold-atom experiments comes from images, the analysis of which is limited by our preconceptions of the patterns that could be present in the data. We focus on the well-defined case of detecting dark solitons—appearing as local density
We present a new collection of processing techniques, collectively "factorized Kramers-Kroenig and error correction" (fKK-EC), for (a) Raman signal extraction, (b) denoising, and (c) phase- and scale- error correction in coherent anti-Stokes Raman
Daniel J. Lum, Michael Mazurek, Alexander Mikhaylov, Kristen M. Parzuchowski, Ryan M. Wilson, Marcus Cicerone, Ralph Jimenez, Thomas Gerrits, Martin Stevens, Charles Camp
In this work, we demonstrate the preservation of time-energy entanglement of near-IR photons through thick biological media ( 1.55 mm) and tissue ( 235 um) at room temperature. Using a Franson-type interferometer, we demonstrate interferometric contrast of
Single photons are a key, fundamental element of most quantum optical technologies, be it for the development of large-scale quantum communication networks, for quantum simulation, or for connecting quantum memories in a quantum computer. The ideal single
Thomas Gerrits, Sae Woo Nam, Adriana Lita, M. Stobinska, T Sturges, A. Buraczewski, W.R. Clements, Jelmer J. Renema, Ian Walmsley
Topological insulators could profoundly impact the fields of spintronics, quantum computing and low-power electronics. To enable investigations of these non-trivial phases of matter beyond the reach of present-day experiments, quantum simulations provide
Yu Xiang, Michael Mazurek, Joshua Bienfang, Michael Wayne, Carlos Abellan, Waldimar Amaya, Morgan Mitchell, Richard Mirin, Sae Woo Nam, Qiongyi He, Marty Stevens, Krister Shalm, Howard Wiseman
Schrödinger held that a local quantum system has some objectively real quantum state and no other (hidden) properties. He therefore took the Einstein-Podolsky-Rosen (EPR) phenomenon, which he generalized and called 'steering', to require nonlocal
Ashutosh Rao, Gregory Moille, Xiyuan Lu, Daron Westly, Davide Sacchetto, Michael Geiselmann, Michael Zervas, Scott Papp, John E. Bowers, Kartik Srinivasan
Microcombs - optical frequency combs generated in microresonators - have advanced tremendously in the last decade, and are advantageous for applications in frequency metrology, navigation, spectroscopy, telecommunications, and microwave photonics
Dong Zhao, Zhelin Lin, Wenqi Zhu, Henri Lezec, Ting Xu, Amit Agrawal, Cheng Zhang, Kun Huang
Nanophotonic devices, composed of metals, dielectrics or semiconductors, enable precise and high-spatial-resolution manipulation of electromagnetic waves by leveraging diverse light-matter interaction mechanisms at sub-wavelength length scales. Their
G Winkler, L W. Perner, Gar-Wing Truong, Gang Zhao, D Bachmann, A S. Mayer, J Fellinger, T Zederbauer, D Follman, P Heu, C Deutsch, D. Michelle M. Bailey, S Puchegger, Adam Fleisher, G D. Cole, O H. Heckl