Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

Search Title, Abstract, Conference, Citation, Keyword or Author
  • Published Date
Displaying 451 - 475 of 2291

Isotropic Nature of the Metallic Kagome Ferromagnet Fe 3 Sn 2 at High Temperatures

March 20, 2021
Author(s)
Rebecca Dally, Daniel Phelan, Nicholas Bishop, Nirmal J. Ghimire, Jeffrey Lynn
Anisotropy and competing exchange interactions have emerged as two central ingredients needed for centrosymmetric materials to exhibit topological spin textures. Fe 3Sn 2 is thought to have these ingredients as well, as it has recently been discovered to

Control of Magnetoelectric Coupling in the Co 2 Y-Type Hexaferrites

March 16, 2021
Author(s)
Chang B. Park, Kwang W. Shin, Sae H. Chun, Jun H. Lee, Yoon S. Oh, Steven M. Disseler, Colin A. Heikes, William D. Ratcliff, Woo-Suk Noh, Jae-Hoon Park, Kee H. Kim
We comprehensively investigated the magnetic, ferroelectric, and ME properties of Ba 2-xSr xCo 2(Fe 1-yAl y) 12O 22 single crystals in broad doping ranges of Sr (1.0 less than or equal to} x less than or equal to} 1.8) and Al (0.00 less than or equal to} y

Classical Spin Liquid or Extended Critical Range in h-YMnO 3 ?

March 11, 2021
Author(s)
Sofie Janas, Jakob Lass, Ana-Elena Tutueanu, Morten L. Haubro, Christof Niedermayer, Uwe Stuhr, Guangyong Xu, Dharmalingam Prabhakaran, Pascale P. Deen, Sonja Holm-Dahlin, Kim Lefmann
Inelastic neutron experiments on the classical triangular-lattice frustrated antiferromagnet h-YMnO 3 reveal diffuse, gapless magnetic excitations present both far below and far above the ordering temperature, TN. The correlation length of the excitations

Phonon redshift and Hubble friction in an expanding BEC

March 11, 2021
Author(s)
Stephen Eckel, Ted Jacobson
We revisit the theoretical analysis of an expanding ring-shaped Bose-Einstein condensate. Starting from the action and integrating over dimensions orthogonal to the phonon's direction of travel, we derive an effective one-dimensional wave equation for

A new model dielectric function for loss functions and electron damping

March 10, 2021
Author(s)
Eric L. Shirley
Trends in the zeroth frequency moment of the imaginary part of the dielectric function are studied for a wide range of metals, semiconductors and insulators. These results are combined with estimates for the inverse-first moment (related by Kramers-Kronig

Charge-transfer satellites in the photoemission and x-ray absorption spectra of SrTiO3 and TiO2: Experiment and first-principles theory

March 10, 2021
Author(s)
Eric L. Shirley, Joseph Woicik, Cherno Jaye, Daniel A. Fischer, Abdul K. Rumaiz, Joshua J. Kas, John J. Rehr, Conan Weiland
Complete ab initio real-time cumulant and Bethe-Salpeter-equation calculations accurately capture the detailed satellite structure observed in both the photoemission and x-ray absorption spectra of the transition-metal compounds SrTiO3 and TiO2. Real-space

Core-hole processes in photoemission and x-ray absorption by resonant-Auger electron spectroscopy and first-principles theory

March 10, 2021
Author(s)
Eric L. Shirley, Joseph Woicik, Conan Weiland, James M. Ablett, Abdul K. Rumaiz, Michael T. Brumbach, Joshua J. Kas, John J. Rehr
The electron-core-hole interaction is critical for proper interpretation of core-level spectroscopies commonly used as structural tools in materials' science. Resonant Auger- electron spectroscopy can uniquely identify exciton, shake, and charge-transfer

The OCEAN Project

March 10, 2021
Author(s)
Eric L. Shirley, John T. Vinson, Keith Gilmore
This chapter presents a high-level description of a suite of programs denoted by the acronym OCEAN (Obtaining Core Excitation spectra ab initio and with NBSE), where NBSE denotes the underlying NIST Bethe-Salpeter Equation program. The main computational

Uncertainty Quantification of Atomistic (DFT and MD), Mesoscale (PFM) and Continuum (CALPHAD) Methods and the Impact on Thermodynamic Models of Metals: A Review

March 5, 2021
Author(s)
Gabriel Joshua, Noah Paulson, Thien Duong, Francesca Tavazza, Chandler Becker, Santanu Chaudhuri, Stan Marious
Design of improved metals relies on multi-scale computer simulations to provide thermodynamic properties when experiments are difficult to conduct. In particular, atomistic methods such as Density Functional Theory (DFT) and Molecular Dynamics (MD) have

Charge Transfer Enhanced Magnetic Correlations in Type-II Multiferroic Co 3 TeO 6

March 1, 2021
Author(s)
Chi-Hung Lee, Erdembayalag Batsaikhan, Ma-Hsuan Ma, Wen-Hsien Li, Chin-Wei Wang, Chun-Min Wu, Hung-Duen Yang, Jeffrey W. Lynn, Helmuth Berger
Magnetic structure of the Co ions in monoclinic Co 3TeOd6^ in the antiferroelectric state at 16 K has been determined by neutron powder together with single crystal diffractions. The indices of the magnetic reflections that appear at the incommensurate

Field-Tuned Magnetic Structure and Phase Diagram of the Honeycomb Magnet YbCl 3

March 1, 2021
Author(s)
Yiqing Hao, Hongliang Wo, Yimeng Gu, Xiaowen Zhang, YiQing Gu, ShiYi Zheng, Yang Zhao, Guangyong Xu, Jeffrey W. Lynn, Naoki Murai, Wenbin Wang, Jun Zhao
We report thermodynamic and neutron diffraction measurements on the magnetic ordering properties of the honeycomb lattice magnet YbCl 3. We find YbCl 3 exhibits a Neel type long-range magnetic order at the wavevector (0,0,0) below T N = 600 mK. This

Operando Study of Thermal Oxidation of Monolayer MoS2

March 1, 2021
Author(s)
Sangwook Park, Angel Garcia-Esparza, Hadi Abroshan, Baxter Abraham, John Vinson, Allesandro Gallo, Dennis Nordlund, Joonsuk Park, Taeho R. Kim, Roberto Alonso-Mori, Dimosthenis Sokaras, Xiaolin Zheng
Monolayer MoS2 is a promising semiconductor to overcome the physical dimension limits of the microelectronic devices. Understanding the thermochemical stability of MoS2 is essential since these devices generate heat and are susceptible to oxidative
Was this page helpful?