NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
A new model dielectric function for loss functions and electron damping
Published
Author(s)
Eric L. Shirley
Abstract
Trends in the zeroth frequency moment of the imaginary part of the dielectric function are studied for a wide range of metals, semiconductors and insulators. These results are combined with estimates for the inverse-first moment (related by Kramers-Kronig relations to the static dielectric function) and knowledge of the first moment from the f-sum rule. Matching all three moments allows for construction of a model dielectric function that reasonably predicts the loss function at different values of momentum and lifetime damping effects on occupied and unoccupied electron states. This is demonstrated by comparing model results and results of detailed, first- principles calculations.
, E.
(2021),
A new model dielectric function for loss functions and electron damping, Radiation Physics and Chemistry, [online], https://doi.org/10.1016/j.radphyschem.2019.02.024, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=927161
(Accessed October 1, 2025)