NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Chiral Properties of the Zero-Field Spiral State and Field-Induced Magnetic Phases of the Itinerant Kagome Metal YMn6Sn6
Published
Author(s)
Rebecca Dally, Jeffrey W. Lynn, Nirmal J. Ghimire, Dina Michel, Peter Siegfried, Igor I. Mazin
Abstract
Applying a magnetic field in the hexagonal plane of YMn6Sn6 leads to a complex magnetic phase diagram of commensurate and incommensurate phases, one of which coexists with the topological Hall effect (THE) generated by a unique fluctuation-driven mechanism. Using unpolarized neutron diffraction, we report on the solved magnetic structure for two previously identified, but unknown, commensurate phases. These include a low-temperature, high-field fan- like phase and a room-temperature, low-field canted antiferromagnetic phase. An intermediate incommensurate phase between the fan-like and forced ferromagnetic phases is also identified as the last known phase of the in-plane field-temperature diagram. Additional characterization using synchrotron powder diffraction reveals extremely high-quality, single-phase crystals, which confirms that the presence of two incommensurate magnetic structures throughout much of the phase diagram is an intrinsic property of the system. Interestingly, polarized neutron diffraction shows that the centrosymmetric system hosts preferential chirality in the zero- field double-spiral phase, which, along with the THE, is a topologically non-trivial characteristic.
Dally, R.
, Lynn, J.
, Ghimire, N.
, Michel, D.
, Siegfried, P.
and Mazin, I.
(2021),
Chiral Properties of the Zero-Field Spiral State and Field-Induced Magnetic Phases of the Itinerant Kagome Metal YMn<sub>6</sub>Sn<sub>6</sub>, Physical Review B
(Accessed October 27, 2025)